

Incidence of ERBB gene fusions (EGFR, ERBB2, ERBB4) across tumor types

Laura Schubert¹, Andrew Elliott², Robert C. Doebele³, Emil Lou⁴, Hossein Borghaei⁵, Michael J. Demeure⁶, Razelle Kurzrock⁷, Anh T. Le¹, Joshua E. Reuss⁸, Sai-Hong Ignatius Ou⁹, David R. Braxton⁶, Christian A. Thomas¹⁰, Sourat Darabi⁶, Wolfgang Michael Korn¹¹, Wafik S. El-Deiry¹², Stephen V. Liu⁸; ¹University of Colorado School of Medicine, Denver, CO; ²CARIS Life Sciences, Irving, TX; ³Rain Therapeutics, Newark, CA; ⁴University of Minnesota School of Medicine, Minneapolis, MN; ⁵Fox Chase Cancer Center, Philadelphia, PA; ⁶Hoag Memorial Hospital Presbyterian, Newport Beach, CA; ⁷University of California San Diego, Moores Cancer Center, La Jolla, CA; ⁸Georgetown University, Washington, DC; ⁹University of California Irvine, Orange, CA; ¹⁰New England Cancer Specialists, Scarborough, ME; ¹¹Caris Life Sciences, Phoenix, AZ; ¹²Cancer Center at Brown University, Providence, RI

Introduction

Gene fusions involving receptor tyrosine kinases are established oncogenes in multiple cancer types. Gene fusions can be successfully targeted with small molecule inhibitors. ALK, ROS1, RET, and NTRK fusions all have FDA approved targeted inhibitors. HER family fusions (EGFR, ERBB2, ERBB4) have been previously described, however, there has not been a comprehensive study of their frequency. *HER* family fusions are important potential candidates for targeted therapies. In this study, we sought to comprehensively analyze the frequency and molecular features of *EGFR*, *ERBB2* and *ERBB4* fusions. We assessed *HER* family fusion partners, genomic features, cancer types and co-occurring mutations.

Methods

Tumor samples (n = 64,354; representing > 40 tumors types) submitted to Caris Life Sciences (Phoenix, AZ) were molecularly profiled by next-generation sequencing of DNA (NextSeq, 592-gene panel; or NovaSeq, whole exome) and RNA (whole transcriptome). Gene fusion partners, in/out-of-frame status, retention of ERBB kinase domain, topology of fusion breakpoints, and co-alterations were characterized for each *ERBB* fusion transcript detected. Fusion prevalence was further examined in public data sets (TCGA, MSK-IMPACT and AACR GENIE).

		Public data sets				
Fusion	Caris Life Sciences (N= 64,354)	TCGA PanCancer (N= 10,967)	MSK IMPACT (N= 10,945)	AACR GENIE (N=96,324)	Overall Frequency	
EGFR	0.1% (59)	0.3% (27)	0.8% (88)	0.6% (637)	0.6% (752)	
ERBB2	0.2% (114)	0.5% (50)	<0.1% (10)	0.1% (113)	0.1% (173)	
ERBB4	0.2% (108)	<0.1% (7)	<0.1% (4)	<0.1% (34)	<0.1% (45)	

Figure 1 – Overall ERBB family fusion incidence in the Caris Life Sciences and public data sets.

Figure 2 – Characteristics of fusions detected in the Caris Life Sciences cohort. (A) Proportion of ERBB fusions that were in-frame or retained the ERBB kinase domain. (B) Distribution of fusion topologies determined from analysis of fusion breakpoints.

		EGFR Fu	JSI
Fusion Partner	Caris LS	TCGA	11
EGFR-SEPT14	20	13	
SEPT14-EGFR			
EGFR-PSPH	4		
EGFR-VSTM2A	3	1	
EGFR-LAMA2			
VOPP1-EGFR	1		
SEC61G-EGFR	2	2	
EGFR-GBAS			
EGFR-SEC61G			
EGFR-TNS3			
EGFR-VOPP1			
VSTM2A-EGFR	1		
ELDR-EGFR			
ZNF713-EGFR			
EGFR-GRB2	2		
LANCL2-EGFR	2		

ERBB4 Fusions

Fusion Partner	Caris LS	TCGA	I
IKZF2-ERBB4	20		
ERBB4-IKZF2	13		
LANCL1-ERBB4	3		
KANSL1L-ERBB4	3		
ERBB4-TRIM33			
ERBB4-PARD3B			
ERBB4-PXMP2			
AGAP1-ERBB4	2		
KLF7-ERBB4	2		
ERBB4-FN1	2		

References

The results shown here are in part based upon data generated by the TCGA Research Network: https://www.cancer.gov/tcga

Cerami et al. The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discovery. May 2012 2; 401.

Gao et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

The AACR Project GENIE Consortium. AACR Project GENIE: Powering Precision Medicine Through An International Consortium, Cancer Discov. 2017 Aug;7(8):818-831

Zehir et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med. 2017 Jun;23(6):703-713. doi: 10.1038/nm.4333. Epub 2017 May 8. Erratum in: Nat Med. 2017 Aug 4;23 (8):1004. PMID: 28481359; PMCID: PMC5461196.