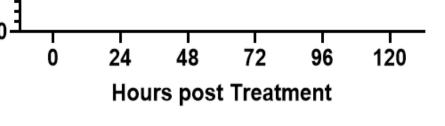
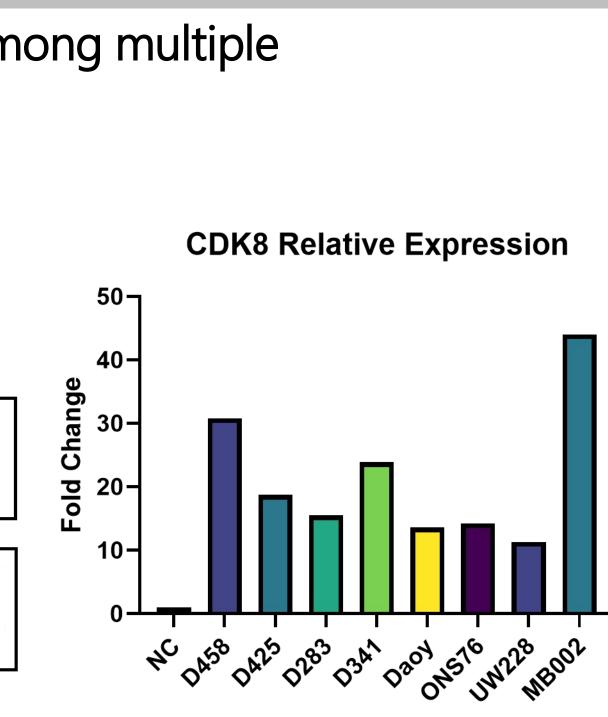
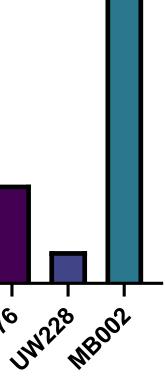
CDK8-Mediator complex plays positive transcriptional role in MYC-amplified medulloblastoma

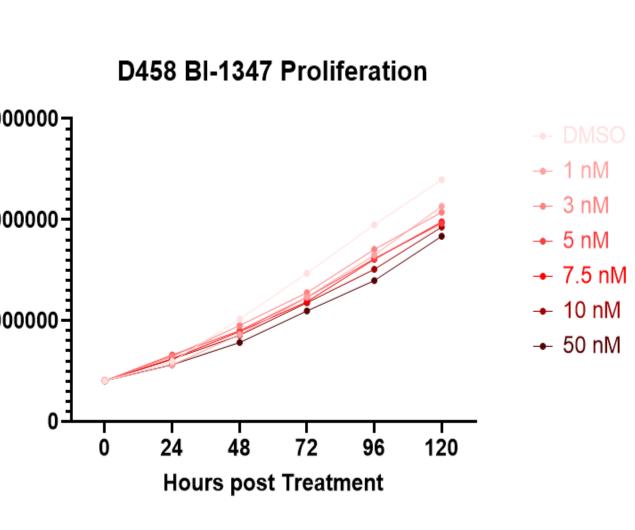


Ritz CE^{2,3}, Madhavan K^{1,2}, Venkataraman S^{1,2}, Vibhakar R^{1,2,3} ¹Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, Colorado ²Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado ³Children's Hospital Colorado, Aurora, Colorado


Background Results Medulloblastoma (MB) is the most common malignant pediatric brain tumor. It Figure 1: Expression of CDK8 increased among multiple medulloblastoma subtypes is a heterogenous cancer categorized into four distinct molecular subtypes. Group 3 MB is characterized by MYC amplification and carries a poor prognosis with a 50-60% 5-year survival expectancy¹. Group 3 MB has been a focus of **CDK8** Relative Expression therapy development in MB research given its dismal prognosis, however, it has Group 3 proven difficult to find an efficacious way to target the hyper-transcriptional D425 D283 D341 Daoy activity that results from MYC amplification. Currently available molecular therapies are failing to outperform the standard therapy of surgical resection, CDK8 craniospinal irradiation, and adjuvant chemotherapy which has been the <u>p</u> 20 consistent therapy for the previous decades with little improvement. This betatreatment reduces quality of life for the patient and underlines the importance Actin NC 0458 0425 0283 0341 0204 576 N228 002 of the identification of novel therapeutic targets. **DepMap Public 20Q4** In this study, we investigate cyclin dependent kinase 8 (CDK8), a mediator complex-associated transcriptional regulator. CDK8-mediator complex has been well-characterized in yeast as a transcriptional regulator through interaction with the C-terminal domain of RNA Polymerase II². It has been previously implicated in colorectal cancer and BCR-ABL leukemia^{3,4}. CDK8 has been implicated as both a positive and negative transcriptional regulator.⁵ CDK8 was identified in MYC-amplified MB as a potential actionable target by gene essentiality screening however its role in MB has yet to be defined. 045° 0425 0283 0341 0204 NST6 W228 NB002 Western blotting of protein isolate from two medulloblastoma subtypes: Group 3 (D458, D425, D283, D341, MB002) and SHH (Daoy, ONS76, UW228). Quantification of CDK8 **Study Design** protein expression performed using ImageJ and analyzed relative to normal cerebellar Hypothesis expression of CDK8. Group 3 MB demonstrated marked increase in CDK8 expression ranging in all medulloblastoma lines. MYC gene expression obtained from DepMap Public We hypothesize that CDK8 activation occurs as a direct consequence of MYC gene expression database. Comparison of MYC gene expression and CDK8 amplification and that this increased expression enhances Myc driven transcription and reveal relationship between increased CDK8 expression and increased MYC gene chromatin activation to suppress apoptosis and promote self-renewal and radioexpression. resistance of MB tumor stem cells. Figure 2: Growth reduction demonstrated with CDK8 chemical inhibition Materials and Methods at increasing titrations • *In vitro* models of group 3 medulloblastoma: D458 grown in DMEM supplemented with FBS, sodium pyruvate, penicillin-streptomycin, and Lglutamine. D283 grown in DMEM supplemented with FBS, sodium pyruvate, penicillin-streptomycin, and non-essential amino acids. D458 Senexin B Proliferation D458 BI-1347 Proliferation • Protein expression analysis with western blotting on 4-20% SDS-PAGE. 🗕 75 nM Quantification completed with ImageJ peak area analysis. 🗕 150 nM 2000000 2000000 🔶 250 nM


- Spheroid live cell imaging using Incucyte software with photographs taken every 24 hours. Cells grown in appropriate media with added CDK8 chemical inhibitors Senexin B (10-2000nM) and BI-1347 (0.25-50nM).
- DepMap Public 20Q4 CCLE gene expression database contains expression data derived from RNAseq data in thousands of pathologic cell lines. Expression data from excel file was retrieved, analyzed, and graphed in GraphPad Prism.

🗕 300 nM → 500 nM 1000000 + 2000 nM



Proliferation of MYC-amplified medulloblastoma line D458 demonstrated that with increasing titrating inhibition of CDK8, growth rates decrease. Chemical inhibition of CDK8 performed with Senexin B (IC50 = 218.6 nM) and BI-1347 (IC50 = 2.591 nM).

- CDK8 is essential to MB cell survival
- 3 medulloblastoma
- as mediator complex stability
- MYC

- *leukemia.* Nat Commun, 2019. **10**(1): p. 4741.
- 4. Xi, M., et al., CDK8 as a therapeutic target for cancers and recent 77-91.
- *transcription.* Transcription, 2010. **1**(1): p. 4-12.

Thank you to the Vibhakar lab for supporting my project. I would like to individually thank Krishna Madhavan, Ahmed Abdel-Hafiz, and Sujatha Venkataraman. Thank you also to the research track director Dr. Allan Prochazka and research track coordinator Zachary Lundquist.

Contact information: Caitlin.Ritz@CUAnschutz.edu **Conflict-of-interest Disclosure:** There are no relevant conflicts of interest to disclose

Discussion

• The increased relative expression of CDK8 in medulloblastoma cell lines as compared to normal cerebellum support previously published findings that

• Relative expression of CDK8 is noted to be higher in cell lines with strong MYC amplification (D458, D425, MB002) indicating there may be an association between transcriptional activation and CDK8 expression in group

• Chemical deletion of CDK8 results in growth rate reduction indicating CDK8 functions as a positive transcriptional regulator in group 3 medulloblastoma

Future Directions

• Protein analysis of chemical depletion to be conducted looking at potential downstream transcriptional targets (i.e. RNA Polymerase II and MYC) as well

• Genetic depletion studies to be run mirroring chemical depletion studies: cell proliferation experiments, and protein and RNA analysis

• Chromatin precipitation studies to be completed to elucidate the chromatin localization of CDK8-Mediator complex as well as potential interactions with

References

Kijima, N. and Y. Kanemura, *Molecular Classification of Medulloblastoma*. Neurol Med Chir (Tokyo), 2016. 56(11): p. 687-697.

2. MYCDannappel, M.V., et al., *Molecular and in vivo Functions of the CDK8 and* CDK19 Kinase Modules. Front Cell Dev Biol, 2018. 6: p. 171.

3. Menzl, I., et al., A kinase-independent role for CDK8 in BCR-ABL1(+)

developments in discovery of CDK8 inhibitors. Eur J Med Chem, 2019. 164: p.

5. Galbraith, M.D., A.J. Donner, and J.M. Espinosa, *CDK8: a positive regulator of*

Acknowledgements