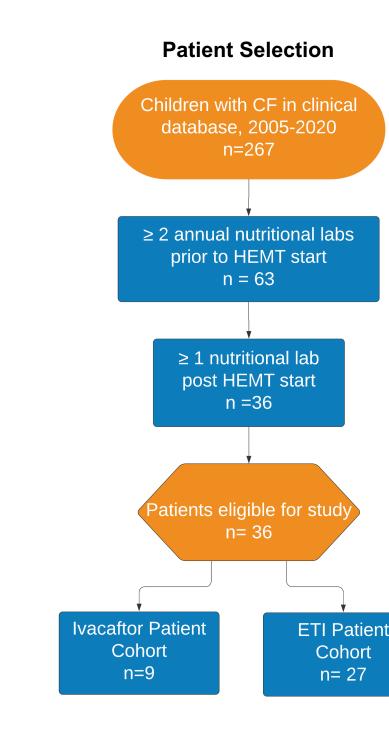
Improvement in fat-soluble vitamin levels following highly-effective CFTR modulator use in children with CF


Helene Kuffel¹, Jordana Hoppe^{1,2}, Maxene Meier¹, Jacob Mark^{1,2}, Elinor Towler¹, Brandie Wagner¹, Edith Zemanick^{1,2} ¹University of Colorado School of Medicine, Aurora, CO, Department of Pediatrics, ²Childrens's Hospital Colorado, Aurora, CO

BACKGROUND

- People with CF are at risk for malnutrition and fat-soluble vitamin **deficiencies** due to pancreatic insufficiency and fat malabsorption
- Highly effective CFTR modulators, ivacaftor and elexacaftor/tezacaftor/ ivacaftor (ETI), substantially improve CFTR activity, lung function and nutritional status (weight and bodymass index) in people with CF with responsive genetic mutations
- Highly effective modulators may also improve pancreatic function
- Little is known regarding the effect of these medications on the levels of fatsoluble vitamin levels (Vit. A, D and E) following treatment with ivacaftor and ETI

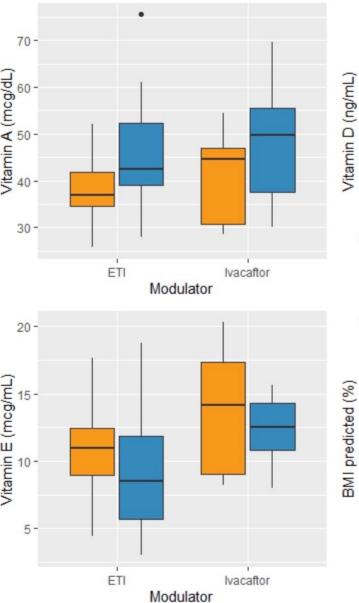
METHODS

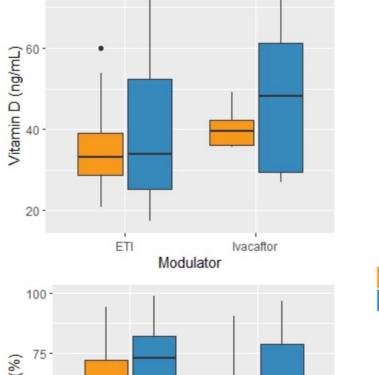
- **Retrospective study** of children with CF who had at least two annual evaluations including vitamin A, D and E serum measurements prior to ivacaftor or ETI start date and at least one evaluation \geq 3 months postmodulator start date
- Data collected included demographics, CF diagnostic data, pancreatic status, nutritional status, and lung function
- Summary statistics were calculated and vitamin values were compared pre and post modulator within group via Wilcoxon tests

Table 2. Vitamin measurements before and after modulator initiatio

	lvacaftor	ETI	Total
	(N=9)	(N = 27)	(N = 36)
Vitamin A, mcg/dl	X 7	, , ,	
Pre	41 (9.8)	38 (6.5)	39 (7.4)
Post	48 (13.5)	45 (10.8)	46 (11.4)
P-value	0.05	<0.001	
Vitamin D, ng/ml			
Pre	40.8 (5.1)	35 (9.3)	36 (8.8)
Post	46.7 (18.1)	38.6 (16)	41.7 (16.7)
P-Value	0.50	0.39	
Vitamin E alpha, mcg/ml			
Pre	13.8 (4.4)	10.7 (2.9)	11.5 (3.6)
Post	12.2 (2.7)	9.2 (4.4)	9.9 (4.2)
P-Value	0.04	0.01	
BMI % predicted			
Pre	44 (31)	60 (20)	57 (24)
Post	48 (33)	68 (22)	63 (26)
P-value	0.46	0.008	
FEV ₁ % predicted			
Pre	96 (11)	94 (16)	95 (15)
Post	99 (15)	102 (15)	102 (15)
P-value	0.18	0.42	
Values presented as mean (SE))		

values presented as mean (SD)


RESULTS


Table 1. Patient characteristics

	lvacaftor	ETI	Total
	(N=9)	(N = 27)	(N = 36)
Age at modulator start, years	9.7 [6.6, 13.2]	13.4 [6.8, 21.7]	13.1 [6.6, 21.7]
Female sex	6 (67%)	12 (44%)	18 (50%)
Genotype risk group			
High	3 (33%)	25 (93%)	28 (78%)
Low	6 (67%)	2 (7%)	8 (22%)
Pancreatic status			
Insufficient	2 (22%)	27 (100%)	29 (81%)
Sufficient	7 (78%)	0 (0%)	7 (19%)
Number of vitamin measurements			
Pre	5 [3, 6]	7 [3, 10]	6 [3, 10]
Post	2 [1, 4]	2 [1, 6]	2 [1, 6]
Time range, years*			
Pre	0.03 to 9.3	0.01 to 12.2	0.10 to 12.2
Post	0.8 to 4.3	0.02 to 1.6	0.02 to 4.3

Continuous variables are summarized by median [min, max] and categorical variables are summarized using frequency with standard deviation

*summarized using min and max

ETI

Modulator

Children's Hospital Colorado

CONCLUSIONS

 Children treated with ETI had higher vitamin A levels following at least 3 months of treatment • Vitamin D values did not change substantially, and vitamin E values were lower, although the change was unlikely to be clinically significant • Vitamin levels **did not change** in those treated with ivacaftor, possibly due to small numbers, fewer pancreatic insufficient patients or less impact on fat absorption compared to ETI

IMPLICATIONS

• Treatment with **ETI may improve** absorption of the fat-soluble vitamin A • Future studies with more participants and longer follow-up times may determine if changes in vitamin A levels persist and if other fat-soluble vitamin levels improve with time.

 Additional studies may evaluate if patients may decrease doses of fat soluble vitamin supplementation after starting ETI

• Factors such as seasonal changes in vitamin D values and supplementation should be considered in future studies

ACKNOWLEDGEMENTS

Cystic Fibrosis Foundation StatNet Award ZEMANI20Y7 and NIH/NCATS Colorado CTSA UL1 TR002535