Left Ventricular Electro-Mechanical Discoordination is Present in Patients with Tetralogy of Fallot not Meeting Conventional Criteria for Pulmonary Valve Replacement

University of Colorado Anschutz Medical Campus

<u>Alexis Gerk¹, Michal Schäfer PhD^{1,2}, Benjamin Frank MD², Johannes von Alvensleben MD²,</u> Dunbar Ivy MD², Max B. Mitchell MD²

¹University of Colorado School of Medicine; ²Children's Hospital Colorado Dept. of Pediatric Cardiothoracic Surgery

Background

- Pulmonary regurgitation (PR) and RV dilation influence timing of pulmonary valve replacement (PVR) in patients with repaired Tetralogy of Fallot (rTOF).
- LV function is an independent marker of TOF patient outcomes.
- New markers of electromechanical discoordination (EMD) have been developed.
 - Systolic stretch fraction (SSF): quantifies the ratio of ventricular myocardium inappropriately relaxing during systole.
 - **Diastolic relaxation fraction (DRF):** quantifies the inappropriate myocardial contraction during diastole.
 - DRF has been used as a marker for LV diastolic discoordination in patients with pulmonary hypertension. However DRF has not been examined in patients with rTOF.

Aims

- 1. Analyze LV EMD using SSF and DRF in repaired TOF patients with pulmonary regurgitation who do not meet commonly used criteria for PVR and have mild-tomoderate RV dilation (<150 mL/m²)
- 2. Determine if SSF and DRF correlate with RVEDVi in this group of TOF patients.
- 3. Analyze LV intracavitary flow (LVICF) organization to examine correlation with RVEDVi.

Hypothesis

Patients with rTOF will have abnormal LV EMD and abnormal LVICF.

- cardiac MRI.
- CVI42 platform.
 - rate (Figure 2)
- volume (Figure 1)

Table 1: Patient demographics and hemodynamic characteristics.

	rTOF (n=18)	Control (n=20)	P-value
Gender (F)	9 (50%)	10 (50%)	NA
Age [yrs]	15 (9-55)	17 (7-44)	0.137
RVEDVi [ml/m ²]	118 ± 23	85 ± 14	<0.001
RVESVi [ml/m ²]	56 ± 13	36 ± 8	<0.001
RVEF [%]	53 ± 6%	58 ± 6%	0.008
LVEDVi [ml/m ²]	83 ± 11	80 ± 15	0.379
LVESVi [ml/m ²]	37 ± 7	33 ± 8	0.884
LVEF [%]	55 ± 6	60 ± 5	0.174
SSF	0.03 (0.01-0.05)	0.007 (0.006-0.013)	0.002
DRF	2.735 (2.358-2.959)	3.362 (3.122-3.904)	0.001

Methods

 Patients w rTOF and mild-moderate PR <150 mL/m² (n=18) and healthy controls (n=20) underwent

LV EMD was analyzed using SSF and DRF derived from strain and strain rate analysis considering individual LV myocardial segments. LV myocardium was analyzed using feature-tracking module within

• Under ideal conditions, all the segments of the LV myocardium are in the ejection phase and

contracting. This is indicated by a negative strain

Temporal-geometric LV end-diastolic volumes were separated and quantified as percentage of direct flow, retained inflow, delayed ejection flow, and residual

Results

Children's Hospital Colorado

- TOF patients with PR and mild to moderate RV dilation
- The degree of systolic and diastolic EMD correlates with
- with significantly decreased direct flow and significantly
- SSF and DRF are unique and sensitive early markers of LV dysfunction compared to conventional MRI metrics.