Title: Platelet Nadir and Postoperative Delirium after Cardiac Surgery with Cardiopulmonary Bypass

Authors: Jacob Plaisted¹, BS; Elijah Christensen MD, PhD¹; Nathan Clendenen, MD, MS¹

Affiliations: University of Colorado School of Medicine, Aurora, CO, United States

Background

Cardiac surgery with cardiopulmonary bypass (CPB) has one of the highest rates of postoperative delirium when compared to other surgery types; with an estimated incidence of 26-52% when using well-validated diagnostic standards.¹ Risk factors, pathophysiology, and treatment of delirium is still not fully understood.² Similar mechanisms that have been proposed to explain the development of postoperative delirium have been implicated in CPB-associated platelet activation and decline.³⁻⁷ In addition, platelet activation following CPB has been associated with postoperative consequences such as acute kidney injury (AKI), stroke, and mortality.⁸⁻¹⁰ In this study we hypothesize that nadir platelet counts cardiac surgery with cardiopulmonary bypass will be associated with incidence of delirium.

Methods

The study design is a multi-site retrospective cohort of cardiac surgery patients (n = 2,455) at an academic medical hospital and community hospital with cardiac surgery programs. The study was approved by the Colorado Multiple Institution Review Board #17-2455. For normally distributed continuous variables, we used a two-tailed t test. For non-normally distributed variables we used a Wilcoxon signed rank test. For categorical variables we used a chi squared test. We performed a multivariate logistic regression to develop a prediction model for delirium within 7 days of intensive care unit admission. We also performed a sensitivity analysis to compare the full model, a parsimonious model, and a univariate model using Akaike information criterion. Our primary exposure of interest was platelet nadir, and our secondary exposures of interest were platelet nadir time in minutes and age.

Results

The patient cohort characteristics are listed in table 1. In an unadjusted univariate analysis, patients experiencing delirium compared to those who did not have a lower platelet nadir, later platelet nadir time, and were older (table 1).

In a multivariable model age, sex, diabetes, platelet nadir, and platelet nadir time were independently associated with the incidence of delirium (table 2). The AUC ROC for the model was 0.685. A parsimonious model containing age, sex, platelet nadir, and platelet nadir time carried 98.7% of the cumulative model weight with an AUC ROC of 0.638. A univariate model with platelet nadir carried 96.9% of the full model weight with an AUC ROC of 0.601 (table 3). The optimal cutoff value for platelet nadir was 83 x 10^9/L using Youden's J statistic.

Conclusion

Platelet count after cardiac surgery with cardiopulmonary bypass may be a pragmatic indicator for predicting the incidence of delirium in the cardiothoracic intensive care unit.

Tables

Table 1. cohort characteristics and comparison between patients with and without a diagnosis of delirium in the first 7 days after cardiac surgery in a univariate analysis.

Patient demographics							
Age	62.7 ± 12.9						
Sex, male	1724/2433 (71%)						
Race, white	1889/2455						
Institution, academic	1769/2433 (73%)						
Pre-operative characteristi	CS						
Heart failure	804/2433 (33%)						
Diabetes	572/2433 (24%)						
Obstructive sleep apnea	225/2433 (91%)						
Carotid stenosis	195/2433 (8%)						
Cognitive impairment	4/2433 (0.2%)						
Procedure							
Aortic Procedures	453/2419 (19%)						
AVR	532/2419 (22%)						
CABG	983/2419 (41%)						
Off pump CABG	3/2419 (0.1%)						
PVR	26/2419 (1%)						
TVR	18/2419 (1%)						
Outcomes							
Post-operative Delirium	293/2433 (12%)						
Post-operative Death	78/2433 (3%)						

Univariate analysis	All n = 2,433	No delirium 2140/2,43 3	Delirium 293/2,433	P value
Platelet nadir (x10^9/L)	106 ± 42	107 ± 42	94 ± 41	<0.0001
Platelet nadir time (minutes)	3,612±1, 763	3551 ± 1694	4028 ± 2,133	0.003
Age (years)	62.7 ± 12.9	62.2 ± 12.9	66.1 ± 12.3	<0.0001

Table 2. Multivariable regression of the full model and ROC curve.

Term		Estimate	Std Error	ChiSquare	Prob>ChiSq	Lower 95%	Upper 95%		1 00										
Intercept	Unstable	-8.6708014	13397.717	0.00	0.9995	-26267.714	26250.3722		1.00								/		
age		0.02631976	0.0057674	20.83	<.0001*	0.01518339	0.03780571												
gender[Female]		0.29765393	0.0689055	18.66	<.0001*	0.16190199	0.43222425		0.90							100	/	_	-
race[American Indian and Alaska Native]		0.85482514	0.5688468	2.26	0.1329	-0.3486086	1.93480533			-					1				
race[Asian]		-0.7739371	0.5006746	2.39	0.1222	-1.8771928	0.14182537		0.80						1				
race[Black]		-0.1742016	0.3125581	0.31	0.5773	-0.786112	0.46449866		0.00					/	1				
race[Hawaiian or Pacific Islander]		0.43644888	1.0531073	0.17	0.6786	-2.2305965	2.25034217		0.70					1					
race[Multiracial]		-0.2701662	0.3776751	0.51	0.4744	-1.0419111	0.46690257		0.70					5					
race[Other]		0.00769463	0.2793165	0.00	0.9780	-0.5261659	0.59660866			1			//						
facility_location[MHCHOSPITAL]	Unstable	6.04219588	13397.717	0.00	0.9996	-26253.001	26265.0852	> >	0.60	1			1					_	-
facility_location[UCH HOSPITAL]	Unstable	6.98630692	13397.717	0.00	0.9996	-26252.057	26266.0293	4 4		-		/	1						
death[False]		0.1057218	0.1631633	0.42	0.5170	-0.201656	0.44140683	ensitivity e Positive	0.50	-	/	1					-		_
HF[False]		-0.004967	0.0711892	0.00	0.9444	-0.143345	0.13597455	e a			//	_							
DM[False]		-0.1849295	0.0793816	5.43	0.0198*	-0.3391204	-0.0275819	S S	0.40		1								
OSA[False]		0.07506766	0.1166501	0.41	0.5199	-0.1448092	0.31416284		0.40										
carotid_stenosis[False]		-0.0513175	0.1223284	0.18	0.6748	-0.2823115	0.19922428		1121-12	1/	1								
cog_impair(False)		-1.1021224	0.5377273	4.20	0.0404*	-2.2359631	0.00987925		0.30	1	1								
plt_nadir		-0.0057334	0.00181	10.03	0.0015*	-0.009356	-0.0022614			4	/								
Platelet nadir time (minutes)		6.8168e-5	3.6927e-5	3.41	0.0649	-5.0607e-6	0.00013984		0.20	1								_	-
Redo[No]		0.10525633	0.2151759	0.24	0.6247	-0.2874498	0.56800038			1									
Procedure[Aortic]		0.0194415	0.259836	0.01	0.9404	-0.4802233	0.57733404		0.10	1									
Procedure[AVR]		-0.504086	0.2615987	3.71	0.0540	-1.0081978	0.05590943		0.10	f									
Procedure[CABG]		-0.3557173	0.2518905	1.99	0.1579	-0.8391071	0.19003975			1									
Procedure[MVR]		-0.3931199	0.2695738	2.13	0.1448	-0.9140303	0.17897854		0	1	1 1	1		1	1		1 1	1	1
Procedure[OFF PUMP CABG]		1.30433323	1.1213201	1.35	0.2447	-1.4070301	3.49358944			0	0.20)	0.	40	0.6	50	0.80	F	1.00
Procedure[PVR]		-0.1029323	0.5855568	0.03	0.8605	-1.4179659	0.95482317						1	-Spe	cificit	,			
															ositiv				
														aise P	OSITIV	_			

Table 3. Sensitivity analysis of a parsimonious multivariable model and univariate model.

1.00

0.60

1-Specificity False Positive

	Term	Estimate	Std Error	ChiSquare	Prob>ChiSq	Lower 95%	Upper 95%	Term	Estimate	Std Error	ChiSquare	Prob>ChiSq
	Intercept	-2.8757515	0.4518502	40.51	<.0001*	-3.7746027	-2.0025015	Intercept	-1.1357805	0.1732359	42.98	<.0001*
	plt_nadir	-0.0061465	0.0017529	12.30	0.0005*	-0.0096458	-0.0027754	plt_nadir	-0.0085045	0.0016939	25.21	<.0001*
	Platelet nadir time (minutes)	6.16115e-5	3.5453e-5	3.02	0.0822	-8.8767e-6	0.00013024					
	age	0.02133933	0.0053953	15.64	<.0001*	0.01093733	0.03209807					
	gender[Female]	0.27864991	0.0651193	18.31	<.0001*	0.15020265	0.40568354					
	1.00							1.00				
	0.90		//	الممر				0.90				1
	-		Andrea .					-			1	
	0.80	1		-				0.80			//	_
	0.70	(market						0.70		/		
		1						-		1		
ry e	0.60							≥ .50.60				
Sensitivity True Positive	0.50							Sensitivity 0.60 0.50		1		
ne F	- //							ne E	1			
1	0.40							o € 0.40				
	0.30							0.30	//			
								- /	/			
	0.20							0.20				
	0.10							0.10				
	-{											

0.80

0.60

1-Specificity

False Positive

1.00

References

- 1. Jarvela K, Porkkala H, Karlsson S, Martikainen T, Selander T, Bendel S. Postoperative Delirium in Cardiac Surgery Patients. J Cardiothorac Vasc Anesth. Aug 2018;32(4):1597-1602. doi:10.1053/j.jvca.2017.12.030
- 2. Chen H, Mo L, Hu H, Ou Y, Luo J. Risk factors of postoperative delirium after cardiac surgery: a meta- analysis. J Cardiothorac Surg. Apr 26 2021;16(1):113. doi:10.1186/s13019-021-01496-w

- 3. Maldonado JR. Neuropathogenesis of delirium: review of current etiologic theories and common pathways. Am J Geriatr Psychiatry. Dec 2013;21(12):1190-222. doi:10.1016/j.jagp.2013.09.005
- 4. Ormseth CH, LaHue SC, Oldham MA, Josephson SA, Whitaker E, Douglas VC. Predisposing and Precipitating Factors Associated With Delirium: A Systematic Review. JAMA Netw Open. Jan 3 2023;6(1):e2249950. doi:10.1001/jamanetworkopen.2022.49950
- 5. Schenning KJ, Deiner SG. Postoperative Delirium in the Geriatric Patient. Anesthesiol Clin. Sep 2015;33(3):505-16. doi:10.1016/j.anclin.2015.05.007
- 6. Koning NJ, Atasever B, Vonk AB, Boer C. Changes in microcirculatory perfusion and oxygenation during cardiac surgery with or without cardiopulmonary bypass. J Cardiothorac Vasc Anesth. Oct 2014;28(5):1331-40. doi:10.1053/j.jvca.2013.04.009
- 7. Lannemyr L, Bragadottir G, Krumbholz V, Redfors B, Sellgren J, Ricksten S-E. Effects of Cardiopulmonary Bypass on Renal Perfusion, Filtration, and Oxygenation in Patients Undergoing Cardiac Surgery. Anesthesiology. 2017;126(2):205-213. doi:10.1097/aln.000000000001461
- 8. Karhausen JA, Smeltz AM, Akushevich I, et al. Platelet Counts and Postoperative Stroke After Coronary Artery Bypass Grafting Surgery. Anesth Analg. Oct 2017;125(4):1129-1139. doi:10.1213/ANE.000000000002187
- 9. Kertai MD, Zhou S, Karhausen JA, et al. Platelet Counts, Acute Kidney Injury, and Mortality after Coronary Artery Bypass Grafting Surgery. Anesthesiology. Feb 2016;124(2):339-52. doi:10.1097/aln.0000000000000959
- 10. Moreau D, Timsit JF, Vesin A, et al. Platelet count decline: an early prognostic marker in critically ill patients with prolonged ICU stays. Chest. Jun 2007;131(6):1735-41. doi:10.1378/chest.06-2233