Abstract

There is increasing evidence that oxidative metabolism and fatty acids play an important role in BRAF-driven tumorigenesis, yet the effect of \(\text{BRAF}^{\text{V600E}} \) expression on metabolism is poorly understood. We examined how this BRAF mutation modulates metabolite abundance. Using NIH3T3 mouse fibroblast models, we found cells expressing \(\text{BRAF}^{\text{V600E}} \) were enriched with immunomodulatory lipids and had a unique transcriptional signature. The \(\text{BRAF}^{\text{V600E}} \) mutation promoted accumulation of long chain polyunsaturated fatty acids and rewired metabolic flux with non-Warburg behavior. This cancer-promoting mutation induced the formation of TNT-like protrusions which preferentially accumulated lipid droplets. In the plasma of melanoma patients harboring the \(\text{BRAF}^{\text{V600E}} \) mutation, levels of lysophosphatidic acid, sphingomyelin, and long chain fatty acids were significantly increased in patients who did not respond to BRAF inhibitor therapy following treatment. Our findings show BRAF\(^{\text{V600}}\) status plays an important role in regulating the immunomodulatory lipid profile and lipid trafficking which may inform future therapy across cancers.