Interleukin-6-dependent epithelial fluidization initiates fibrotic lung remodeling

Jacob E. Michalski1, Ian T. Stancil1, Corinne E. Hennessy1, Kristina L. Hatakka1, Ivana V. Yang1,2, Jonathan S. Kurche1, Mercedes Rincon3, and David A. Schwartz1,3 (*Contributed equally)

1 Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus
2 Department of Medicine, Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus
3 Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus

Within the lung, distal airspace remodeling in bleomycin injury (model)
- Acute lung injury (ALI) and fibrosis
- Characterized by ability to collectively migrate and distal changes in cell shape
- Distal from wound healing or EMT
- Involves in tissue-level remodeling in development

What are the dynamic and signaling mechanisms regulating this remodeling?

![Image of epithelial cells (IF) lung (N=5) isolated from multiple regions per subject]

- Proximal airways (N=5)
- Distal airways (N=5)
- Honeycomb cysts (N=4)

All cells cultured identically, used at passage 2 at air liquid interface (ALI)
- Base cell surface + media
- Apical cell surface + air
- Robust replication in vivo phenomena by day 14 of ALI

Summary of Additional Findings
- Airway epithelia are fluidized in vivo mouse lung injury models
- Bleomycin, influenza (H1N1 PR8)
- Pharmacological inhibition of IL-6/SFK signaling axes prevents epithelia from becoming fluidized
- Mesenchymal cells from fibrotic lungs express higher level of IL-6/syk phosphorylation
- Healthy epithelia co-cultured with fibrotic mesenchymal cells become fluidized
- Can be rescued by blocking IL-6 signaling

References
- This research was supported by the following funding: NHLBI (U01HL151816), DoD Focused Project Program (W81XWH-17-1-0721), NHLBI (R01 HL143833), VAAC Merit Review (I58BX305296), NHLBI (R01HL092071), NHLBI (U2HHL123442), NHLBI (HL143833), and NHL-NA (R01HL020029).