RISK FACTORS FOR UNCHANGED VENTRICLES DURING PEDIATRIC SHUNT MALFUNCTION

Rebecca Reynolds MD,1,2, Ranbir Ahluwalia BS,2, Vishal Krishnan BS3, Katherine A. Kelly BA4, Jaclyn Lee BS5, Raymond P. Waldrop BS6, Bradley Guidry BS2, Astrid C. Hengartner BS1, Justin McCroskey MED6, Anastasia Aynychyna MS7, Susan Staulcup MPH7, Heidi Chen PhD8,9, Todd C. Hankinson MD5,7, Brandon G. Rocque MD MS6, Chevis N. Shannon DrPH MBA1,2, Robert Naftel MD1,2

INTRODUCTION

- Hydrocephalus is one of the most common pediatric neurosurgical conditions
- Ventriculoperitoneal shunting remains most common method of surgical treatment
- Increased ventricular size on CT or MRI usually a indicator malfunction
- However, an estimated 10-20% of all malfunctions associated with unchanged ventricular size
- Diagnostic dilemma with prolonged workup
- Opinions vary as to the cause of symptomatic shunt failure without radiographic findings
- This multicenter case-control study aimed to identify risk factors for unchanged ventricular size

METHODS

- Retrospective 1:1 age-matched case-control study at three institutions
- Children with shunted hydrocephalus who underwent shunt revision with intraoperative evidence of malfunction
- Cases = patients with a change in the frontal-occipital horn ratio (FOR) between malfunction and baseline of < 0.05,
- Controls = FOR changes ≥ 0.05.
- Presence of infection, abdominal pseudocyst, pseudomeningocele, wound drainage, and lack of baseline cranial imaging at the time of malfunction warranted exclusion.

RESULTS

- On multivariable analysis with collinear variables removed, unchanged ventricles were associated with frontal shunt, programmable valve, non-siphoning shunt, larger baseline FOR, and no prior shunt infection

<table>
<thead>
<tr>
<th>Variable</th>
<th>Odds ratio (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larger baseline FOR</td>
<td>1.63 (2.49, 5.51)</td>
<td><0.001</td>
</tr>
<tr>
<td>Frontal entry point malfunction</td>
<td>1.74 (1.06, 2.86)</td>
<td>0.028</td>
</tr>
<tr>
<td>Malfunction valve: programmable</td>
<td>2.12 (1.06, 4.31)</td>
<td>0.019</td>
</tr>
<tr>
<td>Malfunction system: non-siphoning</td>
<td>2.00 (1.69, 4.97)</td>
<td><0.001</td>
</tr>
<tr>
<td>No prior shunt infection</td>
<td>2.34 (1.27, 4.32)</td>
<td>0.007</td>
</tr>
<tr>
<td>First shunt malfunction</td>
<td>1.37 (0.83, 2.24)</td>
<td>0.215</td>
</tr>
</tbody>
</table>

CONCLUSION

Children with a frontal shunt, programmable valve, non-siphoning shunt, baseline large ventricles, and no prior shunt infection were more likely than others to have unchanged ventricles at shunt failure.

REFERENCES

- Multiple surgeons performed the operations.
- Thresholds for surgical revision may have varied, which was mitigated by documented catheter or valve malfunction and replacement in the operative report.
- May be some variables with high degrees of freedom that are underpowered.
- Patients may have ventricular change in third or fourth ventricles that would misclassify them as unchanged ventricles (used FOR).
- Many people were involved in measuring FOR, increasing variability.

ACKNOWLEDGEMENTS

- The authors would like to thank the AANS/CNS Joint Pediatric Neurosurgical Section who provided the opportunity to create this multicenter research collaboration.

DISCLOSURE / FUNDING

- The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.
- No funding sources to disclose.