Alcohol adolescent substance use disorder and the “with limited prosocial emotions” specifier: brain activation during decision associated with increasing other harm and self-benefit
Joseph T. Sakai, MDa, MDa, Gabriel Yepes, BSA, Susan K. Mikkilch, PhD, R. McKeil Carter, PhD, Shannon K. McWilliams, MAA, Kristen M. Raymond, BAA, Drew E. Winters, PhD,b,c, Jody Tanabe, MDa, Manish Danwali, PhD
University of Colorado, School of Medicine, Denver, CO
Disclosures: Dr. Sakai received reimbursement in 2012 for completing a policy review for the WellPoint Office of Medical Policy & Technology Assessment (OMPTA), WellPoint, Inc., Thousand Oaks, CA. He also served as a board member of the ARTS (Addiction Research and Treatment Services) Foundation and the Head Family Foundation.

INTRODUCTION:
- Adolescent SUD is common and predicts increased risk of drug abuse, other behavioral problems and worse health outcomes in adulthood (SAMHSA. 2017 NSDUH Annual National Report 2017; Nelson SE et al., 2015).
- DSM-5 also describes a “with limited prosocial emotions” (LPE) specifier identifying individuals who display high callous-unemotional traits, as these adolescents may be at even greater risk of substance misuse (Baskin-Sommers AR et al., 2015).
- The neuroscience of social cognition is often conspicuously absent from biological models of addiction; the available literature suggests that SUD is associated with deficits in social cognition (Uakerrman J, 2018).
- Adolescent prosocial behaviors and empathy have a negative association to adolescent substance use over time (Carlo G et al., 2011; Winters DE et al., 2020).
- Problem Statement: Very limited work has examined the association of social cognition and prosocial decision making with adolescent SUD/extending behavior problems in the MRI environment.
- Project Aim: We sought to better understand brain structures engaged during decisions which may be beneficial to others and increasingly beneficial to self, and to identify group differences in brain activation patterns.
- Hypothesis: We hypothesize that all three groups will have measurable differences in the pattern of brain activation depending on whether the subject is behaving in a manner that is beneficial to versus harmful to others.

METHODS:
Groups studied: (1) male patients with SUD+LPE, (2) male patients with SUD but without LPE and (3) male controls.

Inclusion:
- Adolescents 15-18 years old
- Male
- No history of IQ <80
- No history of DSM diagnosis of major depressive illness or other psychiatric disorder, or substance use disorder (regardless of LPE) and what may be more specifically related to LPE.
- Right-handed

Exclusion:
- Current dangerousness
- Red Green color blindness
- Psychosocial biopsychosocial disorder
- Callowhitecnic withdrawal
- withdrawal from use 12 hours prior to scan
- Volunteered left from
- Red Cross
- Standard MRI exclusion

Sample:
- Patients recruited from a University based treatment program for youth with substance and conduct problems (all had at least one non-nicotine substance use disorder).
- Controls recruited from same neighborhoods as patients and excluded for prior convictions (minor traffic and curfew violations permitted) or for history of substance related treatment/exposure/triposition
- 66 adolescents (21 SUD patients with LPE; 21 without LPE and 24 controls) imaged in 3T MRI while playing Alka’s game.
- (The Colorado Multiple Institutional Review Board approved the study (COMIRB protocol 12-0111). For adolescents under the age of 18, parents gave consent and patients assent. Participants 18 years of age given written consent to participation.

Imaging Parameters:
- We obtained functional brain images with Blood Oxygen Level Dependent (BOLD) contrast using a T2*-weighted gradient-echo planar imaging (EPI) technique over a 64×64 matrix (TE/TR/TI (in milliseconds): 26/2000/70; Flip angle: 70°; FOV: 200×200 mm in axial acquisition.

RESULTS:
- Figure 1. What brain areas are engaged (more and less) as other harm increases (selecting high-you-gain amounts 16, 32, 64 and examining changes between -3.4. -4.16 and -20.04)

Panel A. Analyses within 24 male control adolescents.

Panel B. Three-group ANCOVA: How do groups differ when other harm changes?
- Significant P<0.05 in bilateral insula and inferior parietal gyrus, right inferior parietal, and orbitofrontal cortex, among other areas (13 clusters; 174 voxels)

Panel C. Two-group analyses: How do groups differ when other harm increases?

SUD patients with LPE-Controls

- Regions engaged in controls include: 1 premotor cortex (PMd) and supplementary motor area (SMA), premotor cortex (M1), and supplementary motor area (SMA)
- Group differences are primarily between controls and SUD patients and show differences in regions implicated in:
 - Theory of Mind (temporal-parietal junction; Tunche et al., 2016)
 - Executive control (superior frontal)
 - Frontal involvement (increased prefrontal connectivity; Dalwani et al., 2014)
 - Facial recognition and social contextual awareness (fusiform, parahippocampal, Chavies & Insausti, 2017)

All OTHER HARM INCREASES:
- Regions engaged in controls include:
 - Superior frontal gyrus, orbitofrontal, inferior parietal, and superior temporal gyrus

AS YOU GAIN INCREASES
- Regions engaged in controls include:
 - Right inferior parietal, superior parietal, superior frontal, middle temporal, and cerebellum

AS OTHER HARM INCREASES
- Regions engaged in controls include:
 - Right inferior parietal, superior parietal, superior frontal, middle temporal, and cerebellum

AS OTHER HARM DECREASES
- Regions engaged in controls include:
 - Superior frontal gyrus, orbitofrontal, inferior parietal, and superior temporal gyrus

AS YOU GAIN DECREASES
- Regions engaged in controls include:
 - Right inferior parietal, superior parietal, superior frontal, middle temporal, and cerebellum

AS OTHER HARM DECREASES
- Regions engaged in controls include:
 - Superior frontal gyrus, orbitofrontal, inferior parietal, and superior temporal gyrus

DISCUSSION/CONCLUSION:
- Our methods allow modeling of engagement of brain regions based on trial content (e.g., as there is increasing harm to a beneficent other, what brain regions become more active during decision).
- The three-group design allows examination of what differences are related to SUD patient status (regardless of LPE) and what may be more specifically related to LPE.