Pancreatic tumor microenvironment modulation by EphB4-ephrinB2 inhibition and radiation

Dallin Milner, Shelby Lennon, Andy Phan, Ayman Oweida, Shilpa Bhatia, Benjamin Van Court, Laurel Darragh, David Raben, Jorge Luis Martinez-Torrecuadra, Jordan Kimberly, Phillip Owens, Sana D Karam
University of Colorado Denver – Anschutz Medical Campus

INTRODUCTION

• The highly immunosuppressive tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) is a driving factor of treatment resistance.

• A potent immunological adjuvant is radiation therapy (RT).

• RT, however, has also been shown to induce infiltration of immunosuppressive populations and can contribute to the formation of fibrotic stroma, which can contribute to tumor progression.

• To gain benefit from the immunogenic effects of radiation and obtain a durable tumor response, it must be rationally combined with targets aimed at mitigating the influx of immunosuppressive cells and fibrosis (Oweida, A., et al. 2017)

• One such target is ephrinB2, which is overexpressed in PDAC and correlates negatively with prognosis (Lu, Z., et al. 2012)

METHODS

• Animal Model: Patient derived xenografts (PDX) PANCl272 and a mouse pancreata derived cell line (FC1242) were injected subcutaneously into the right flank of athymic nude mice and C57Bl/6 mice respectively.

• Treatment: Mice (n=5-7/group) were randomized to receive antibody B11, PBS, RT and combinations thereof. Treatment was started 3 days before RT. The dose of RT was 10 Gy unless otherwise specified.

• Mechanistic studies: Mice received the same treatments but tumors were harvested after 72 hours and processed for flow cytometric analysis of CD4 and CD8 populations.

• Multiplex Immunofluorescence: Staining was performed using IHC and primary antibodies

RESULTS

Figure 1 – High ephrinB2 expression correlates with a worse prognosis in PDAC

Figure 2 – Circulating factors taken characterized from patients with PDAC at baseline, during, and post radiation

Figure 3 – EphB4-ephrinB2 inhibitor (B11) adds to the effect of RT in PDAC. Fold change of tumors over time for PANC272 and FC1242

Figure 4 – Inhibition of EphB4-ephrinB2 interaction decreases blood vessel density and circulating VEGF, with accompanying data from patients

Figure 5 – B11 combination with RT enhances cytoclastic CD4 and CD8 T-cell activation and decreases regulatory T-cell (Treg) and neutrophil infiltration

Figure 6 – Treg depletion in combination with RT leads to significantly increased tumor control and is accompanied by higher levels of T eff activation

Figure 7 – Plasma TGFβ-1, a major regulator of Treg activation and proliferation, is significantly reduced in B11 treated mice

REFERENCES


CONCLUSIONS

• Our study provides strong evidence of Tregs contributing to PDAC resistance to RT and a potential method for reduction in Tregs as well as fibrosis, two areas of critical importance in PDAC, via EFN2-EphB4 blockade.

• The effects of targeting EFN2-EphB4 are not limited to Tregs and fibrosis, but also include reduced angiogenesis and neutrophil infiltration and increased T eff activation.

• The ability to target multiple tumorigenic pathways is a strength of targeting this signaling pair.

• Our findings are supported by clinical data and have translational potential to enhance the therapeutic efficacy of RT in patients with PDAC.

• Future work is aimed at understanding the mechanisms of fibrosis within the tumor microenvironment.

ACKNOWLEDGEMENTS

Paul Sandmel Cancer Research Scholarship, Wings for Hope Pancreatic Research, Paul Collabouts Career Development Award for Clinical Oncology (K12), R21A grant (R21A1713), Cancer League of Colorado and Nanox Fund.