NF1-mutated tumors exhibit increased sensitivity to autophagy inhibition

Eliza Baird-Daniel1, Shadi Zahedif, Kyle B. Williams3, Rajeev Vibhakar1, Andrew Morin1,2, Michelle Desmarais1,2, David Largaespada3, Andrew Thorburn1,2, Jean Mulcahy-Levy1,2

1University of Colorado, Anschutz Medical Campus
2Children’s Hospital Colorado
3University of Minnesota MAF
*California Institute of Technology

Background
- Loss of functional NF1 gene leads to constitutive activation of the Ras/MAPK pathway which induces cellular proliferation and tumorgenesis.
- The NF1 phenotype involves large plexiform neurofibromas that often cannot be treated surgically as the lesions are likely to be extensively involved with the affected nerve and have a propensity to recur after resection.
- Despite the recent expansion of kinase inhibitors (including MEK inhibition) for treatment of NF1 mutated tumors there remains a risk of chemo-resistance in kinase targeted therapies.
- Autophagy, a heavily regulated process by which cellular waste is transferred to lysosomes for degradation and processing, is an integral part of tumor cell survival under stressful conditions including nutrient deprivation and chemotherapy.
- Autophagy has been demonstrated to play an important role in chemo-evasion in other tumor types with MAPK pathway dysregulation but has yet to be explored in NF1-mutated tumors.

Rationale
NF1, neurofibromin1 has been shown to negatively regulate RAS proteins and therefore mutations in NF1 result in the dysregulation of the Ras/MAPK pathway. This in turn will increase cell autophagy dependence and survival. Based on our previous studies regarding tumors with the BRAF V600E mutation in the MAPK pathway, we hypothesize that inhibition of autophagy in NF1 mutated tumors using Chloroquine (CQ) in combination with MEK inhibition will sensitize tumor cells to death thereby enhancing treatment efficacy.

Results
- A. Pharmacologic and genetic autophagy inhibition increase efficacy of trametinib. A. Graphs representing % viability of control and NF1 KO cell lines after 5 days pharmacologic treatment. Combination CQ and trametinib is significantly more effective than trametinib alone in the NF1 KO but not in control lines (n=3).
- B. Bar graphs representing decreased cellular viability when trametinib is combined genetic autophagic inhibition via shRNAs targeting ATG5 than alone in NF1 KO line (n=3).

Conclusions
- Our NF1-KO cells exhibit upregulation of the MAPK pathway.
- Non-BRAF dysregulation within the MAPK pathway yields increased autophagic activity.
- Under serum starvation stress, NF1 KO cells upregulate autophagy to a greater extent than NF1 WT cells.
- Inhibition of autophagy via genetic inhibition or chloroquine increases sensitivity to MEK inhibition.
- Autophagy inhibition via CQ may be an effective adjunctive treatment for NF1 mutated tumors and suggests that diverse CNS tumor types with MAPK pathway dysregulation are susceptible to autophagy inhibition.

Methods
- A CRISPR/Cas9 mediated NF1 KO was derived from human immortalized Schwann cells and utilized as a tumor model.
- Autophagy inhibition was achieved pharmacologically by chloroquine (CQ) and genetically via shRNAs of ATG5 and ATG7.
- Trametinib was used for MEK inhibition.
- Western blot analysis was used for protein expression analysis.

Acknowledgments
- University of Colorado Research Track
- Morgan Adams Foundation
- NIH/NCI K08 Career Development Award K08 CA193982
- St. Baldrick’s Foundation
- No disclosures