

AUGUST 24, 2023

DATA PREPARATION FOR YOUR BIOSTATISTICIAN

ROCS Biostats Team

OVERVIEW

- **ROCS** Biostatistics Services
- Rules of Collaboration
- **Excel Data Cleaning**
- **Developing a Data Dictionary**
- Preparing to Discuss Your Analysis
- **Data Sharing Guidelines**

Suhong Tong, MS

Research Senior Instructor, Dept of Pediatrics

Areas of expertise:

- Large data
- · Longitudinal data
- · Time series
- Survey analysis with population complex design
- Structural equation modeling
- Quality improvement analysis
- Survival analysis

Kaci Pickett, MS

Research Instructor, Dept of Pediatrics

Areas of expertise:

- Survival analysis
- Dynamic prediction
- · Statistical consulting

Emily Cooper, MS

Research Instructor, Dept of Pediatrics

Area of expertise:

- · Large Data
- · Statistical consulting

Samantha Bothwell, MS

Research Instructor, Dept of Pediatrics

Area of Expertise

- Time Series
- Longitudinal Data
- Clustering Analysis
- Spatial Statistics
- · Statistical Consulting

UNIVERSITY OF COLORADO ANSCHUTZ MEDICAL CAMPUS

ROCS BIOSTATISTICS SERVICES

The biostatistician can collaborate in all parts of protocol development and implementation, not just the statistics!

- Sample size calculation
- Analysis plan and protocol development
- Big data analysis (PHIS, TQIP)
- Retrospective data consulting
- Prospective data consulting
- Randomization schedules

- Database structure and review (REDCap)
- Clinical trial and general study design
- Abstract and poster development
- Manuscript and grant preparation

RULES OF COLLABORATION WITH ROCS BIOSTATISTICIANS

- 1. Involve your biostatistician early and communicate often!
- 2. Data should be stored in REDCap!
 - If your data is already in Excel, the data should be cleaned and include a data dictionary
- 3. Be considerate of the time we need to complete your analysis!
 - For simple analyses, we need at least 4 weeks from receiving <u>clean</u> data
- 4. Your biostatistician should be considered a co-investigator
 - Considered co-authors on manuscripts, usually 2nd author
- Notify us of any co-authored submissions and acceptance, even for abstracts

RULES OF COLLABORATION WITH ROCS BIOSTATISTICIANS

Hours of work doesn't equal weeks of work!

Request	Minimum Time Required	
Power/Sample size calculation	10-20 hours	
Protocol and analysis plan development	20-40 hours	
Data analysis (depending on complexity) 40-120 hours +		
Abstract assistance	10-40 hours	

Eight Tips for Creating Clean Data in Excel:

- 1. Create concise variable names
 - Ideally 4-20 characters long
 - Should not include special characters or spaces
- 2. Leave cells blank to indicate missing values
 - May also use a standard value like 9999 or NA
- 3. For categorical variables, use shorthand notation to label categories
 - Use numbers (1, 2) or individual letters (M, F)
 - Be consistent in using uppercase <u>or</u> lowercase!

Eight Tips for Creating Clean Data in Excel:

- 4. Ensure dates use identical formatting, such as MM-DD-YYYY or MM/DD/YYYY
 - Use Excel date formatting by using Home > Number > Format Cells > Date

5. For select all that apply questions, each option should be a separate yes/no variable

Eight Tips for Creating Clean Data in Excel:

- Free text should only be used for notes that won't be used in analysis!
- Don't highlight or color-code your data!
 - · Instead, add variables to indicate this
- Always keep an original copy of your data, even if it's messy!

How to identify data entry errors:

- For numeric variables, check the minimum and maximum values using =MIN() and =MAX()
- For categorical variables, select a column and use Data > Sort & Filter > Filter and click the down arrow

Data cleaning can take a lot of time!

It is usually an iterative process between you and your biostatistician. Ask your biostatistician for a meeting to discuss data cleaning expectations before you start!

DEVELOPING A DATA DICTIONARY

Your data dictionary is usually a separate Excel document or sheet!

It should be up-to-date and include the same information as a REDCap codebook!

Variable Name	Variable Label	Variable Attributes
record_id	Unique record identifier	
mrn	Medical record number	
dob	Date of birth	MM-DD-YYYY
sex	Patient sex	1=Female, 2=Male
ethnicity	Ethnicity	H=Hispanic or Latino, N=Not Hispanic or Latino, U=Unknown
height	Height (cm)	
iss	Injury severity score	0-75

Main types of data analysis we see in ROCS:

- 1. Descriptive statistics
- 2. Hypothesis testing
- 3. Correlations
- 4. Regression analyses
- 5. Survival analyses
- 6. Publication-ready figures

If you don't know what type of analysis you'd like, we're here to help!

Things to discuss with your biostatistician:

- What is your primary aim?
 - When possible, provide your IRB protocol to your biostatistician!
- Is there similar published literature?
 - · Consider looking at adult studies!
 - Helpful for identifying covariates/potential confounders and information on standard statistical tests
- What have previous researchers found?

Things to discuss with your biostatistician:

- Will some patients have repeat events, admissions, or measurements?
- What is your primary outcome?
 - If your outcome is continuous, what is a clinically meaningful difference?
- What are your inclusion and exclusion criteria?

Things to discuss with your biostatistician:

- Should the analysis be stratified? Should the analyses be performed separately within groups?
 - Are there known cofounders?
- Do you want to perform a sub-analysis? Do you want to repeat the analyses in a smaller group?
 - Is there a subset of your study population that may respond better to your intervention?

Regardless of what you find in similar literature, understand that a specific analysis may not be feasible for your study!

Your biostatistician has the expertise to know when and how to appropriately implement analyses! We will consider:

- Sample size
- Study type
- Statistical assumptions

DATA SHARING GUIDELINES

Data containing PHI should not be shared with ROCS biostatisticians via email! Some alternative methods:

- OneDrive
- Microsoft Teams
- REDCap Send-It

Reach out to ARC for specific information on data sharing best practices!

