

The Provider Documentation Summarization Quality Instrument (PDSQI-9) for AI Generated Text

The Problem

- You are a specialist pulmonologist, and a new patient shows up.
- You have a new service in your EHR that uses ChatGPT to summarize their medical history for relevant information
- How can you trust that summary is useful, accurate, and not missing important details?



Current Conundrum

- This technology is now available but there's no standard to automatically evaluate the quality of the summary
- Health systems want to use new AI tools, but don't want to put anything out that is unsafe
- Human evaluation is time and resource intensive
 - Current state of "do you like it" won't cut it

Current State of Evaluation

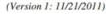
Limitations of Current Methodology

- Traditional methods measure overlap in words or meaning to some reference text but....
 - Heart Attack ≠ Hear Attak
 - Myocardial Infarction ≠ Heart Attack
 - Bacterial ≠ Viral
- Most rubrics were designed to assess clinical documentation quality
 - All designed to be used by humans, for human-authored notes

PDQI-9

- Physician Documentation
 Quality Instrument
- Nine criteria assess documentation quality
- Validation on humanauthored admission notes, progress notes, and discharge summaries

Attribute	Score					Description of Ideal Note
1. Up-to-date	Not at all	2	3	4	Extremely 5	The note contains the most recent test results and recommendations
2. Accurate	Not at all	2	3	4	Extremely 5	The note is true. It is free of incorrect information.
3. Thorough	Not at all	2	3	4	Extremely 5	The note is complete and documents all of the issues of importance to the patient.
4. Useful	Not at all	2	3	4	Extremely 5	The note is extremely relevant, providing valuable information and/or analysis.
5. Organized	Not at all	2	3	4	Extremely 5	The note is well-formed and structured in a way that helps the reader understand the patient's clinical course.
6. Comprehensible	Not at all	2	3	4	Extremely 5	The note is clear, without ambiguity or sections that are difficult to understand.
7. Succinct	Not at all	2	3	4	Extremely 5	The note is brief, to the point, and without redundancy.
8. Synthesized	Not at all	2	3	4	Extremely 5	The note reflects the author's understanding of the patient's status and ability to develop a plan of care.
9. Internally Consistent	Not at all	2	3	4	Extremely 5	No part of the note ignores or contradicts any other part.
Total Score:						1



Evaluation Needs Going Forward

- Transparent and rigorous validation
- Need criteria to assess LLM (e.g., ChatGPT) weaknesses
 - Hallucination, Omission, Revision, Faithfulness/Confidence, Bias/Harm, Groundedness, Fluency
 - Struggle with multi-document, longitudinal tasks

PDSQI-9 Human Validation

PDSQI-9 Development

Stage 1

Literature
 Review and
 Attributes
 Identification

Stage 2

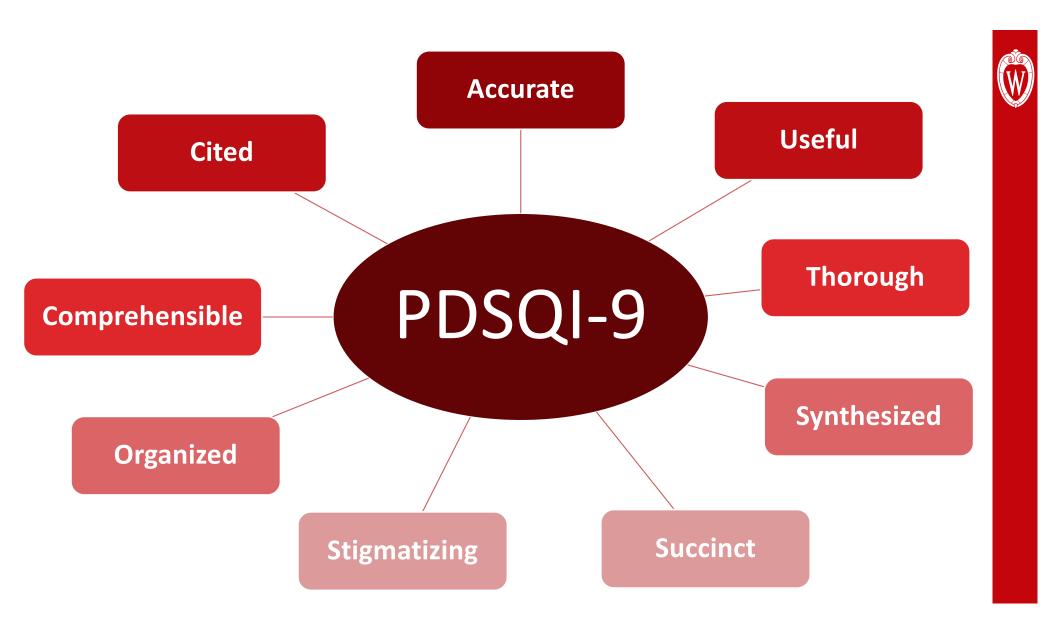
 Multi-Stakeholder Input and Initial Design

Stage 3

Study Design
 Setup and
 Training
 Human Expert
 Raters

Stage 4

Validation with 7 Expert Raters



Validation Study Design

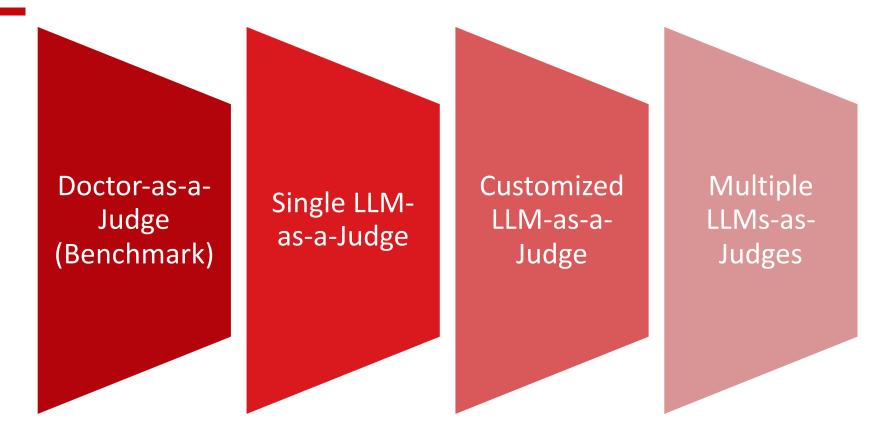
- UW Health EHR
 - March 2023- December 2023
- Perspective of Provider at Outpatient Encounter
 - 11 specialties (Gyn, Neuro, Derm, Ortho, FM, IM, Ophtho, Neurosurg)
 - Summaries over prior 3-5 encounters (real-world multi-document EHR)
 - 200 unique patients
- Seven physician raters
 - Mixture of senior, junior, and trainee physicians
- 779 summaries
- 8,329 PDSQI-9 items

Outcome

- Validated the instrument, demonstrating excellent validity for clinical use.
 - Inter-Rater Reliability
 - Intraclass correlation coefficient (ICC) = 0.867 (95% CI: 0.867–0.868)
 - Internal Consistency
 - Cronbach's $\alpha = 0.879$ (95% CI: 0.867–0.891)
- First tool built using a semi-Delphi process on real-world, multisite EHR data

PDSQI-9 LLM-as-a-Judge

Study Design



CoPARC June 3rd, 2025

Automating Evaluation of AI Text Generation in Healthcare with a Large Language Model (LLM)-as-a-Judge. MedArXiv. 2025

Input to the LLM-as-a-Judge

Patient Notes

Subjective:

[NAME] is a

[AGE]-year

old male who

presents for

evaluation of

Patient Summary

[PATIENT NAME], a [AGE]-year-old male, presents for...

PDSQI-9 Rubric

Accurate: Is the summary accurate in extraction? ...

Task Instructions

Your task is to grade the summary, based on the RUBRIC_SET

Results

LLM-as-a-Judge	ICC ("Inter-rater reliability")	Median Difference (IQR)
GPT-o3-mini	0.803	0 (0,1)
Multiple LLM Judges	0.768	0 (-1,1)
DeepSeek R1	0.762	0 (0,1)
Customized Mixtral	0.746	1 (0,1)

Conclusion

- Developed a novel human evaluation framework to assess LLM performance in EHR summarization tasks.
- Introduced an automated method to evaluate clinical multidocument summaries using LLMs
 - **GPT-o3-mini** achieved strong inter-rater reliability (ICC = 0.803), comparable to expert humans
 - GPT-o3-mini evaluations were ~38x faster than human reviewers (16s vs. 600s)

• ICU Data Science Lab Members

- Madeline Oguss (Program Manager)
- Matthew M Churpek (PI)
- Anoop Mayampurath (PI)
- Majid Afshar (PI)
- John Caskey (Data Engineer)
- Askar Afshar (Data Engineer)
- Jennie Martin (Data Scientist)
- Alexandra Spicer (Data Scientist)
- Skatje Myers (NLP/LLM Post-Doc)
- Mahmudur Rahman (Image Al Post-Doc)
- Emma Graham Linck (PhD Candidate)
- Timothy Gruenloh (PhD student)
- Sierra Strutz (PhD student)
- James Haddad (PhD student)

Collaborators in GenAl

- Brian Patterson, UW Madison
- Guanhua Chen, UW Madison
- Elliot First, Epic
- Karen Wong, Epic
- Nicholas Pellegrino, Epic
- Miranda Schnier, Epic
- Cherodeep Goswami, UW Health
- Frank Liao, UW Health
- · Graham Wills, UW Health
- Dmitriy Dligach, Loyola University Chicago
- Yanjun Gao, Univ of Colorado
- NIH/NLM training grant to the Computation and Informatics in Biology and Medicine Training Program (NLM 5T15LM007359)

Q&A

Public GitLab Repo

