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Gut microbiota phenotypes of obesity
Maggie A. Stanislawski 1,2, Dana Dabelea1,2,3, Leslie A. Lange1,4, Brandie D. Wagner5 and Catherine A. Lozupone 4

Obesity is a disease with a complex etiology and variable prevalence across different populations. While several studies have
reported gut microbiota composition differences associated with obesity in humans, there has been a lack of consistency in the
nature of the reported changes; it has been difficult to determine whether methodological differences between studies, underlying
differences in the populations studied, or other factors are responsible for this discordance. Here we use 16 S rRNA data from
previously published studies to explore how the gut microbiota-obesity relationship varies across heterogeneous Western
populations, focusing mainly on the relationship between (1) alpha diversity and (2) Prevotella relative abundance with BMI. We
provide evidence that the relationship between lower alpha diversity and higher BMI may be most consistent in non-Hispanic white
(NHW) populations and/or those with high socioeconomic status, while the relationship between higher Prevotella relative
abundance and BMI may be stronger among black and Hispanic populations. We further examine how diet may impact these
relationships. This work suggests that gut microbiota phenotypes of obesity may differ with race/ethnicity or its correlates, such as
dietary components or socioeconomic status. However, microbiome cohorts are often too small to study complex interaction
effects and non-white individuals are greatly underrepresented, creating substantial challenges to understanding population-level
patterns in the microbiome-obesity relationship. Further study of how population heterogeneity influences the relationship
between the gut microbiota and obesity is warranted.
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INTRODUCTION
Obesity has reached epidemic proportions in Western popula-
tions.1 Studies aiming to determine the cause of this precipitous
increase are complicated by the mixed etiology and manifesta-
tions of the disease. Individuals vary greatly in their propensity
toward obesity and in the extent to which obesity is associated
with metabolic complications such as hyperlipidemia, hyperten-
sion, glucose intolerance and diabetes, or other adverse health
conditions.2 Obesity is influenced by diet, behavior, and other
environmental as well as genetic factors, and susceptibility to
obesity differs by sex, age, race, ethnicity, and socioeconomic
status.1 Racial/ethnic differences in obesity prevalence are
especially high for women, with Non-Hispanic black and Hispanic
women having much higher prevalence compared to non-
Hispanic whites (NHW).1,3

Many studies have reported differences in microbiota composi-
tion between obese and lean humans.2,4,5 Mouse experiments
have provided compelling evidence that these differences are not
merely correlational, and many potential mechanisms for these
actions have been elucidated.6–9 Studies of the nature of
compositional differences that occur in obese versus lean humans,
however, have been difficult to interpret because the results are
often not in agreement.5,10 One property that has been reported
in multiple studies of obesity is reduced richness of microbes or
their genes.4,11–13 However, although individuals with reduced
richness are more often obese, low richness is not observed in the
majority of obese individuals,11 indicating that low richness only
has the potential to be important in a subset of obese individuals.
The specific taxa reported to differ with obesity have varied across

studies. For instance, the ratio of Bacteroidetes to Firmicutes in
obese versus lean humans has been reported to decrease to
increase or to not change at all.5 Similarly, one small study found
that morbidly obese individuals had increased relative abundance
of Prevotella,14 and Prevotella relative abundance positively
correlated with BMI in a cohort of HIV positive individuals and
controls in Mexico City,15 but Prevotella dominated communities
were explicitly found to not correlate with Body Mass Index (BMI)
in the Old Order Amish.2 These inconsistencies may be influenced
by methodological differences between studies,16 by differences
in composition that are not readily captured by the current
technologies, or they may reflect that genetic, environmental,
and/or lifestyle heterogeneity across the surveyed populations has
an influence on the nature of the microbial associations that occur
with obesity and related metabolic conditions.5 These influences
are poorly understood both in terms of effects on the gut
microbiota composition overall and in the context of the disease-
specific relationships.17,18

In this study, we explore the hypothesis that population
heterogeneity, particularly race/ethnicity, may impact the gut
microbiota-obesity relationship. This hypothesis was motivated by
a meta-analysis involving data from two previously published
studies that included 16 S rRNA sequencing of the fecal
microbiome: (1) a cohort of 152 obese and lean female adult
twins and their mothers from Missouri4 (N= 75 NHW / 77 black;
we refer to this study as “Obese Twins”), and (2) a cohort of lean
individuals across the age spectrum from the US and agrarian
cultures in Malawi and the Amazonas State of Venezuela (we refer
to this study as “Global Gut,” abbreviated GG).19 We explored the
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patterns uncovered in this meta-analysis using three additional
cohorts that included NHW, black and/or Hispanic individuals with
a wide range of BMI (1) a healthy subset of individuals from the
American Gut cohort (AG; N= 5035; 4784 NHW/188 Hispanic/63
black),20 (2) a cohort of teenagers from the Exploring Perinatal
Outcomes among Children study (EPOCH; N= 102; 59 NHW/43
Hispanic),21 and (3) a cohort of HIV positive and negative Mexican
individuals (referred to as the “Mexico City” cohort; N= 42
Hispanic).15 We examine the many correlates of race/ethnicity,
including the prevalence and severity of obesity, diet, smoking
status, and socioeconomic status, and we attempt to understand
how these inter-related factors may impact the relationship
between the gut microbiota and obesity.

RESULTS
Gut microbiota subtypes of obesity observed in Obese Twins
We first observed that there may be distinct gut microbiota
phenotypes associated with obesity while performing a meta-
analysis that combined 16 S ribosomal RNA (rRNA) data from
Obese Twins4 and the GG study19 (Supplementary Fig. 1). The GG
dataset is useful for meta-analysis because it includes fecal
samples from individuals across the two most dramatic
microbiota-composition gradients observed across the human
population:19,22 (1) microbiomes cluster by age, with infants
having a low-diversity microbiota with dramatically different
composition from adults, and (2) microbiomes cluster by culture,
with individuals from agrarian cultures having a Prevotella-rich/
Bacteroides poor microbiota that differs substantially from
individuals from the US and Europe.19,22 We applied Principal
Coordinates Analysis (PCoA) to an unweighted UniFrac distance
matrix of the combined data.23 We note that we used previously
unpublished sequence data from the Obese Twins and GG studies
that were processed together using the same methods (see
Methods for more detail). The PCoA analysis produced clustering
from old to young age from left to right (Supplementary Fig. 1a; p-
value for association with age ≤0.01), and from Western to
Agrarian culture from top to bottom (Supplementary Fig. 1b). The
first principal coordinates axis (PC1) correlated negatively with
alpha diversity (p-value < 0.01 for Phylogenetic Diversity and
Shannon diversity index). PC2 correlated inversely with relative
abundance of the genus Prevotella (p-value < 0.01), consistent with
high Prevotella being observed in agrarian populations.19,24

Race correlates with gut microbiota subtypes in Obese Twins
Obese individuals showed greater spread across both the age and
culture axes of variation than either lean or overweight individuals
from Obese Twins (Supplementary Fig. 1c; p-value < 0.001). As
seen in many studies, many obese individuals clustered with lean
individuals,11 but there were two notable clusters of outliers of
obese individuals, one spreading towards infants/lower alpha
diversity on PC1, and the other spreading towards the Prevotella-
rich/Bacteroides poor communities of agrarian cultures on PC2. We
noted that the obese outliers on PC1 tended to be white, while
those on PC2 tended to be black (Supplementary Fig. 1c–e).
Comparing individuals by obesity status and stratifying by race
(Table 1), we noted that among whites, the average alpha diversity
was lower among obese individuals, but not significantly so.
Among blacks, average alpha diversity was significantly higher
among obese individuals, which was surprising given the prior
literature showing an association between lower alpha diversity
and obesity.4,11–13

To further examine the relationship between these PC axes,
obesity status, and race, we used adjusted hierarchical linear
regression models of BMI versus the PC axes by racial group
(Supplementary Fig. 2a–b). PC1 was associated with higher BMI for
white (β= 29.2 (3.9, 54.5); p-value= 0.025) but not black individuals

(β= 13.6 (−25.2, 52.4); p-value= 0.485) from Obese Twins.
PC2 showed a stronger pattern by race; PC2 correlated with lower
BMI for black individuals (β=−23.5 (−46.6, −0.5); p-value= 0.045)
and higher BMI for white individuals (β= 31.1 (4.1, 58.2); p-value=
0.02). While the PC2 axis correlated with the relative abundance of
Prevotella, this differential pattern by racial group was much stronger
with the PC2 axis than with Prevotella relative abundance alone
(Supplementary Fig. 2c), indicating that this association is driven by
a community type, which may be characterized by Prevotella, but
reflects other gut microbiota as well.

Gut microbiota-obesity relationship in other cohorts
It is difficult to know whether these differential relationships by race
are driven by genetic ancestry or by the many environmental
correlates of self-described race. In the Obese Twins study (Table 1),
black individuals had higher prevalence and severity of obesity;
there were many differences in diet by race (e.g., blacks had greater
intake of meat and calories, higher proportion of carbohydrates and
less of fat, saturated fat, and fiber from grains); and smoking
prevalence was higher among whites. While we did not have
information on socioeconomic status for this cohort, the larger
Missouri Female Twin study has reported that whites had higher
income, more education, greater family intactness and tended to
live in less urban areas.25 It is challenging to untangle these
complex inter-relationships, particularly given that most human
studies of the gut microbiome have small sample sizes and are
among predominantly NHW populations. However, we were able to
explore variation in the gut microbiota-obesity relationship using 3
additional cohorts with at least some representation of other racial
and ethnic groups (Tables S1–S3): the American Gut (AG) project
(non-Hispanic white/NHW, Hispanic white, and black); the EPOCH
study (NHW, Hispanic white) and a cohort from Mexico City of HIV-
positive individuals and controls (Hispanic white). These studies
likewise showed marked differences in obesity prevalence and
severity, diet and socioeconomic status by race/ethnicity.
We first examined predictors of the overall gut microbiota

composition in each of these studies using permutational ANOVA.
Overweight/obese status, race, sex, and smoking status were
generally associated with the gut microbiota composition across
these studies (Supplementary Table 4). Both the Obese Twins and
AG showed a significant interaction between race/ethnicity and
overweight/obese status.
We also investigated whether there was variation in the gut

microbiota-obesity relationship in these studies by race/ethnicity,
as seen in Obese Twins. Since meta analyses of these other studies
with GG would involve a study effect (i.e., the sequences were
produced by different labs using different protocols such as PCR
primers and DNA extraction techniques), rather than using PC axes
in analyses (which did not correspond as directly with alpha
diversity and culture), we explicitly examined the association
between (1) alpha diversity and (2) Prevotella relative abundance
with BMI in each study. These studies showed some corroboration
that there may be differences in the relationship between the gut
microbiota and obesity by race/ethnicity or its correlates.

Inconsistencies in the alpha diversity-BMI relationship
To explore whether the observation of decreased alpha diversity
with obesity varied by race, we used linear regression models of
BMI as a function of alpha diversity (phylogenetic diversity and
Shannon diversity index) by racial group, controlling for potential
confounding variables that varied with each cohort (see Methods).
Interestingly, the association between low alpha diversity and
increased BMI, which has been reported previously in several
studies, was most consistent across studies among NHWs and
most consistent across racial/ethnic groups in AG, which is a
generally healthy cohort with moderate BMI and high socio-
economic status20 (Supplementary Table 1, Fig. 1).
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We tested interactions between alpha diversity and dietary
components (fiber, meat, and fat intake), which were non-
significant in Obese Twins and EPOCH (dietary intake was not
available for Mexico City). In AG, there was a significant interaction
between alpha diversity and intake of “high fat red meat.”
Individuals who consumed high fat red meat 3–5 times/week or
more and had low-moderate alpha diversity (lower 3 quartiles)
had the highest BMI, whereas those consumed high fat red meat
less than three times/week and had high alpha diversity (top
quartile) had the lowest BMI (Fig. 2).

Inconsistencies in the Prevotella-BMI relationship
Next, we examined the relationship between Prevotella and BMI.
We quantified Prevotella as both relative abundance and as the
ratio of Prevotella to Bacteroides (see Methods); we selected the

better predictor of BMI using adjusted R2 values from regression
models. We saw an association between Prevotella and BMI in all
cohorts except for EPOCH. We also found significant interactions
between Prevotella and race/ethnicity, with the magnitude of the
effect estimate for Prevotella increasing from NHWs to Blacks to
Hispanics (Fig. 3). Since Prevotella has previously been associated
with diet, specifically diets high in fiber and low in animal
products/fat, and since there is evidence that Prevotella may
interact with diet in relation to insulin sensitivity,19,26,27 we were
curious as to whether there was an interaction between diet (fiber,
meat, or fat intake) and Prevotella in relation to BMI. This was the
case for fiber in Obese Twins and in AG. In Obese Twins, the
interaction was only evident among blacks, who had generally
higher BMI and substantially greater variation in BMI than whites.
In AG, we did not have power to examine the interaction by race/
ethnicity. Categorizing individuals according to low/high Prevotella

Table 1. Characteristics of the individuals in the Obese Twins cohort overall and by obesity status, stratified by race

All White Black

Non-obese Obese p-value Non-obese Obese p-value

Number of individuals 152 34 41 15 62

Number of samples 270 62 71 21 116

Age 34.0 (12.2) 32.7 (11.7) 35.9 (13.2) 0.266 37.7 (14.6) 32.6 (11.1) 0.136

Hispanic ethnicity 0.695 0.092

No 134 (88.2) 0 (0.0) 0 (0.0) 11 (73.3) 55 (88.7)

Yes 1 (0.7) 0 (0.0) 0 (0.0) 1 (6.7) 0 (0.0)

Unknown 17 (11.2) 4 (11.8) 3 (7.3) 7 (11.3) 3 (7.3) 0.736

Average BMI 34.8 (10.4) 22.8 (2.8) 39.2 (5.9) <0.001 24.3 (3.5) 41.1 (8.7) <0.001

BMI category <0.001 <0.001

Lean 34 (22.4) 26 (76.5) 0 (0.0) 8 (53.3) 0 (0.0)

Overweight 15 (9.9) 8 (23.5) 0 (0.0) 7 (46.7) 0 (0.0)

Obese (Total) 103 (67.8) 0 (0.0) 41 (100.0) 0 (0.0) 62 (100.0)

Obese category I (30 < BMI < 35) 24 (15.8) 0 (0.0) 11 (26.8) 0 (0.0) 13 (21.0)

Obese category II (35 < BMI < 40) 33 (21.7) 0 (0.0) 13 (31.7) 0 (0.0) 20 (32.3)

Obese category III+ (BMI > 40) 46 (30.3) 0 (0.0) 17 (41.5) 0 (0.0) 29 (46.8)

Twin (versus mother of twin) 106 (69.7) 26 (76.5) 26 (63.4) 0.332 8 (53.3) 46 (74.2) 0.204

Monozygotic twin 60 (56.6) 17 (65.4) 13 (50.0) 0.4 7 (87.5) 23 (50.0) 0.113

Smoking status

Smoker 39 (25.7) 8 (23.5) 13 (31.7) 0.392 2 (13.3) 16 (25.8) 0.353

Non-smoker 107 (70.4) 23 (67.6) 27 (65.9) 12 (80.0) 45 (72.6)

Unknown 6 (3.9) 3 (8.8) 1 (2.4) 1 (6.7) 1 (1.6)

Diet

Non-missing dietary information 144 (94.7) 31 (91.2) 38 (92.7) >0.99 14 (93.3) 61 (98.4) 0.842

Kilocalories 1489 (665.8) 1171 (479.5) 1567 (604.1) 0.004 1291 (548.3) 1647 (748.9) 0.098

Protein (%) 15.0 (3.4) 15.8 (3.3) 15.4 (2.0) 0.614 15.4 (4.3) 14.30 (3.45) 0.305

Meat servings 1.8 (1.1) 1.2 (0.6) 1.8 (0.8) 0.001 1.4 (0.9) 2.1 (1.3) 0.055

Fat (%) 38.7 (6.9) 38.4 (8.3) 41.1 (7.1) 0.154 35.3 (6.3) 38.2 (5.7) 0.09

Saturated fat (%) 0.1 (0.03) 0.14 (0.03) 0.14 (0.03) 0.224 0.12 (0.03) 0.12 (0.02) 0.412

Carbohydrates (%) 46.4 (8.6) 43.4 (9.3) 43.8 (7.9) 0.836 51.6 (9.0) 48.3 (7.5) 0.163

Sweets (%) 14.2 (9.8) 11.6 (9.2) 14.4 (9.8) 0.236 11.7 (9.9) 16 (9.9) 0.145

Fiber (%) 0.03 (0.02) 0.03 (0.02) 0.03 (0.01) 0.66 0.05 (0.02) 0.03 (0.01) <0.001

Fiber from grains (%) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0.363 0.01 (0.01) 0.01 (0.00) 0.814

Fiber from vegetables (%) 0.02 (0.01) 0.02 (0.01) 0.02 (0.01) 0.921 0.03 (0.03) 0.02 (0.01) 0.001

Alpha diversity (mean of samples)

Observed species 275.6 (39.9) 283 (28.9) 274 (42.1) 0.318 249.7 (39.8) 278.7 (41.8) 0.021

Shannon diversity index 6.7 (0.5) 6.8 (0.4) 6.7 (0.5) 0.442 6.3 (0.6) 6.7 (0.6) 0.035

Faith’s PD 3.2 (0.7) 3.3 (0.6) 3.2 (0.8) 0.367 2.9 (0.5) 3.2 (0.8) 0.161
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indicate that lower alpha diversity is associated with higher BMI and vice versa. This plot suggests that the association often reported in the
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and low/high fiber, individuals with high Prevotella/low fiber had
the highest BMI and significantly higher than all other groups
(Fig. 4).
Since prior evidence supports an association between smoking

and lower alpha diversity, as well as with higher Prevotella,28 and
smoking relates to obesity,29 we examined the possible role of
smoking as a confounder or effect modifier in these relationships
in Obese Twins and AG. All of the individuals from the EPOCH
study were non-smokers, and the Mexico City study did not report
smoking status. We saw no evidence of an association between
smoking and lower alpha diversity (p-values non-significant with
positive effect estimates); or between smoking and Prevotella. In
Obese Twins, we saw no association between smoking and BMI,
but smoking was correlated with higher BMI in AG (p= 0.02). We
did not see evidence of interactions between smoking and alpha
diversity or Prevotella in relation to BMI. Thus, we treated smoking
as a potential confounder and adjusted for it in the regression
models.

DISCUSSION
In this study, we found preliminary evidence across four studies
that race/ethnicity, or its correlates, may be associated with
distinct gut microbiota subtypes of obesity. In all of the studies
included here with NHW individuals, there was evidence of a low
alpha diversity subtype of obesity, and the association between
lower alpha diversity and higher BMI was most consistent and
strongest among NHWs and in AG, which is a cohort of
predominantly healthy individuals with moderate BMI and high
socioeconomic status. This relationship was notably less consistent
among black and Hispanic individuals. We additionally noted a
novel subtype of obesity in which the gut microbiota composition
was less “Western”, more similar to that of individuals from
agrarian cultures and high in Prevotella. While we did see at least
some evidence of this gut microbiota phenotype of obesity in
three of four studies examined, and some indication of an
association with race/ethnicity, it would need to be validated in
larger and more diverse cohorts. It is notable, however, that we
found some evidence of variation of the gut microbiota-obesity
relationship with race/ethnicity in four very different cohorts in
terms of the population characteristics: adult twins and their
mothers from Missouri, a heterogeneous cohort of healthy highly
educated Americans from across the country, teenagers from

Colorado, and a cohort of HIV positive and control adults from
Mexico City.
These results raise many important questions about the role of

race/ethnicity, ancestry, and genetics in the gut microbiota-
obesity relationship, as well as the influence of lifestyle factors,
such as diet, socioeconomic status, and smoking, all of which
demand larger more racially diverse studies to thoroughly
address. As obesity is known to have a genetic component and
a link with microbiota composition, it stands to reason that genes
may impact microbiota composition in a manner that in turn
influences susceptibility to obesity. This notion was supported in a
study of the microbiota of >1000 fecal samples obtained from
twins in the UK, where a co-occurring group of heritable bacteria
were found to be enriched in individuals with low BMI;
amendment of an obesity-associated microbiota with the
heritable lean-associated species Christensenella minuta resulted
in reduced weight gain when transplanted into germ-free mice.30

The demonstrated link between heritable bacteria and protection
from obesity supports that varied rates of obesity in different
ethnic/racial populations may be driven by genetic polymorph-
isms in those populations that in turn result in varied selections for
different microbiotas. Links between microbiota composition and
ethnicity across various body habitats, including stool, were also
detected in the Human Microbiome Project (HMP), where the
greatest number of differentially distributed microbiota features
(taxa, gene families, and metabolic pathways) with subject
attributes were by race/ethnicity.31 Similarly, recent analyses of
HMP and AG found specific taxa consistently associated with
ethnicity across these two studies, and many of these taxa also
have prior evidence of high heritability.18 Likewise, in this study,
we found that race/ethnicity were significant determinants of the
overall gut microbiota composition in both of the cohorts that we
examined with black and white participants, and both studies
showed a significant interaction between race/ethnicity and
overweight/obese status. The oral and vaginal microbiomes have
also been shown to correlate strongly with race/ethnicity.32,33

Interestingly, one study found that BMI was significantly
correlated with vaginal microbiota composition among African
but not European Americans.34 However, it cannot be ruled out
that these microbiota-correlates with race/ethnicity may be driven
by environmental factors instead of genes; we saw that dietary
intake correlates with race/ethnicity in these cohorts and the gut
microbiota-obesity relationship varied with diet. Prior studies that
have compared the diets in black and white Americans, as well as
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Fig. 4 The relationship between Prevotella and BMI (Fig. 3) in Obese Twins and AG differed according to dietary intake of fiber. This plot shows
the estimated BMI from adjusted regression models by categories of high/low fiber and Prevotella relative abundance, defined according to
the different measures in each study (see Methods). The interaction between fiber and Prevotella was only apparent in blacks in Obese Twins;
AG lacked power to examine these categories by race/ethnicity. In both studies, individuals with low fiber and high Prevotella had the highest
BMI, and those with high fiber and Prevotella had significantly lower BMI
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in African Americans and rural Africans, detected differences in
dietary intake between populations that correlated with differ-
ences in both fecal bacteria and its metabolites.35,36 Another
recent study of over 1000 individuals concluded that genetic
ancestry played a limited role in shaping the gut microbiome
relative to the environment.37 However, this cohort was Israeli
with limited racial and ethnic diversity, specifically very few black
individuals.37 Thus, there is still a substantial gap in our under-
standing about how genetic ancestry shapes the gut microbiota,
how the relationship between the gut microbiota and disease
varies with genetic ancestry, and how these relationships differ
with self-described race, which likely reflects diet, culture, socio-
economic status and other aspects of the environment more
strongly than genetic ancestry.
Our work suggests that ethnic/racial differences across popula-

tions may explain at least some discordance in the nature of
associations between the microbiota and obesity reported in
different studies.10,12 Our observation that low alpha diversity may
correlate with high BMI more consistently in NHWs than in black
or Hispanic populations is consistent with many studies that are
either exclusively or predominantly in NHW populations.11–13

Socioeconomic and health status correlate with race/ethnicity, and
it is difficult to untangle these effects; AG had a fairly consistent
association between lower alpha diversity and BMI across racial
and ethnic groups, and the AG cohort is predominantly healthy,
highly educated, and fairly wealthy individuals since participants
pay to submit their microbiota samples. A recent meta-analysis
and re-analysis of numerous studies of obesity and the gut
microbiome included two Hispanic populations; one Hispanic
Mexican-American cohort showed a trend towards lower alpha
diversity with higher BMI, while a Columbian cohort was one of
only two populations examined (among 10) that showed no trend
towards such an association.12 Hispanic ethnicity is a genetic
admixture of European, Native American and African that varies in
proportion across the United States and across different
countries.38 Interestingly, Colombia is one of the most genetically
diverse group of Hispanics in Latin America with many individuals
having a high proportion of African ancestry.39

Our observation that the association between Prevotella and
BMI was most pronounced among blacks and Hispanics is
consistent with a study in which three morbidly obese individuals,
one black, one Hispanic, and one white (Krajmalnik–Brown, R.
personal communication), were compared to three lean indivi-
duals,14 but such an association was also been noted in a morbidly
obese European individual and was not seen in Hispanic
Americans living on the Texas–Mexico border.40,41 The Prevo-
tella-Bacteroides ratio was also seen to predict fat loss during a
fiber-rich dietary intervention in Danish individuals, suggesting
that the our results may be driven more by diet than by race or
ethnicity.40 Prevotella has been shown to be enriched in
prevalence and in diversity in non-Westernized societies, particu-
larly Prevotella copri, which is near ubiquitous in non-Westernized
populations and includes four distinct clades that tend to co-occur
but are generally absent in Westernized populations.42 Prevotella
is a complex genus that has been linked both to health and
disease, and may interact with diet in complex ways.19,24,42–44 For
example, Prevotella-rich microbiomes have been linked with a
dietary-fiber induced improvement in glucose metabolism,27 but
also with insulin resistance through the production of branched
chained amino acids in the context of a high fat diet.26 While our
analyses mainly focus on Prevotella and BMI, our meta-analysis of
Obese Twins and GG imply that the relationship between the gut
microbiota and obesity is not fully reflected by Prevotella relative
abundance alone.
Our findings should be taken in the context of certain

limitations. Only two of the studies included in our analyses
included black individuals, and many of the included studies had
small sample sizes or small numbers of non-whites. In order to

fully understand whether there are distinct gut microbiota
phenotypes of obesity and their associations with individual
characteristics, much larger sample sizes are needed. We did not
find evidence of strong confounding or interaction effects by
smoking, but the studies had relatively small numbers of smokers.
Diet was measured in different ways across the studies, and we
were unable to examine race-based differences in the effects of
diet in AG due to limited numbers of Hispanics and blacks.
Likewise, it is important to understand the role of genetic risk for
obesity and genetic ancestry in the microbiota-obesity relation-
ship. While there are numerous cohorts with both genetic and
microbiome information, most of these cohorts are also lacking in
racial and ethnic diversity.45

Individuals with obesity vary in the extent of adiposity and also
in the extent to which they suffer from other adverse health
outcomes, including metabolic complications, such as hyperlipi-
demia, hypertension, glucose intolerance, and diabetes.1,2 Since
obesity is a heterogeneous disease, and since several unique
mechanisms by which the microbiota may influence obesity
susceptibility have been proposed,46 it is also not surprising that
there may be multiple distinct microbiota types that associate
with obesity and that these may differ in prevalence in different
cohorts. In fact, obese individuals with a low-diversity microbiota
type have been characterized by more marked adiposity, greater
inflammation, and poorer metabolic health compared to a high-
diversity type.11 Another interesting question is whether different
types of obesity-associated microbiotas may drive obesity by
diverse mechanisms. Experiments in gnotobiotic or humanized
mice that use different types of obesity-associated microbiotas as
donor samples could help to determine whether different
mechanisms may be at play.6,14

Since obesity rates are particularly high in non-white popula-
tions, our observation that the microbiota-obesity relationship
may vary in unique ways by race/ethnicity underscores an urgent
need to evaluate links between the microbiota and obesity in
diverse populations, while simultaneously evaluating the role of
race-associated factors, such as diet and socioeconomic status.
Research about obesity and the gut microbiota has been
dominated by studies focused on NHWs (e.g., ref. 2,11,12), but
there is growing awareness about the importance of race,
ethnicity and geography in determining the gut microbiota,17,18

and there are large racially and ethnically diverse cohorts that
have more recently collected gut microbiome samples and will
likely shed more light on these issues in the future.47 As various
treatments for obesity vary greatly in efficacy across individuals,
experiments that test the effects of weight loss treatments, e.g.,
various diets, in obese populations may benefit from a deeper
understanding about different microbiota types and how they
vary with race/ethnicity. This could facilitate personalized inter-
ventions, where the most effective strategies can be predicted
based on the composition of the microbiota. The gut microbiota
may also offer opportunities to treat or prevent obesity through
personalized probiotics. However, microbiota-based interventions
that do not take into account the differences in the gut microbiota
or microbiota-disease relationships across diverse populations
may be less effective or even have unintended adverse
consequences.17

METHODS
Datasets analyzed
The characteristics of individuals in the cohorts are reported in Table 1, and
Supplemental Tables S1–S3. The Obese Twins sequenced data was
previously published and made publicly available.4 In the Obese Twins
dataset, we analyzed 270 gut samples from 152 people (Table 1). Most
individuals had two samples, with an average time between samples of
57 ± 4 days.4 BMI changed minimally between the two samples. Diet
information was collected via Food Frequency Questionnaires and was
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missing in some cases (Table 1). For regression models, we imputed
smoking when missing (3.9%) using a two-step informed imputation based
first on previous reported smoking (information was gathered at two time
points within about 2 months4); when this was also missing, we used the R
package mice48 to impute based on ancestry, age, and smoking in the
family (twin or mother), since smoking was highly correlated among family
members.
The GG 16 S rRNA data were from the samples described in Yatsunenko

et al.19 However, whereas Yatsunenko et al. analyzed sequences from the
V4 region of 16 S rRNA as sequenced on the Illumina platform, the data
used here in conjunction with the Obese Twins data are publicly available
but previously unpublished and represent sequences from the V2 region of
rRNA that were sequenced on a 454 pyrosequencer with the same
methods as used for Obese Twins,4 facilitating comparisons of the samples
without having to correct for methodological differences used between
studies. In the GG study, we analyzed samples from 491 individuals with
sequences available from the V2 region. The data from the American Gut
project, the Mexico City study, and EPOCH were previously
described.15,20,21 We rarefied all of these datasets at the maximum level
that allowed all (or most) of the samples to remain in the cohort;
rarefaction levels for Obese Twins, AG, EPOCH and Mexico City were 1000/
10,000/2537 and 1089 sequences per sample, respectively. We additionally
rarefied at the minimum value across studies (1000) for a sensitivity
analysis of the overall gut microbiota composition in order to control for
differences between studies in terms of read depth.
Each study that we examined complied with all relevant ethical

regulations and reported the specific details in the previously published
manuscripts.4,15,19–21

Exclusions
Some individuals from these cohorts were excluded from analyses. In AG,
we excluded many individuals due with missing data or who feel outside
of our inclusion criteria (Table S5). As in the AG manuscript, we excluded
individuals with unrealistic values of BMI (weight and heights outside the
range of 2.5–250 kg and 48–210 cm, respectively) and age (birth date after
sampling date).20 We excluded young children (≤5 years) since their gut
microbiota is quite distinct from that of adults, as well as those with
unknown age. Only those who reported that they did not have IBD, IBS, or
Autism and those who were from the USA or Canada were included in
order to create a relatively homogeneous cohort of healthy participants.
Since smoking status was missing in only 0.4% of individuals, it was
imputed to the median (non-smoking). In EPOCH, black and Asian
individuals were excluded due to very small numbers (N= 13 and 4,
respectively). One individual was excluded from the Mexico City cohort
due to missing BMI.

Statistical methods
The characteristics of the cohorts were summarized by obesity status and
stratified by race for Obese Twins and by race/ethnicity for the secondary
cohorts and compared using Chi-squared tests or fisher exact tests for
categorical variables and t-tests for continuous variables.

Analyses of PC axes from meta-analysis of Obese Twins and GG
In order to test for significant differences in the coefficients of variation by
obesity status across the PC axes, we used the R package cvequality.49 We
tested the correlation between the PC1 axis and the alpha diversity
measures using hierarchical linear regression models with PC1 as the
outcome and the alpha diversity measures as the predictors, allowing for
correlation by subject and family. We tested the correlation between the
PC2 axis and percent abundance of the genus Prevotella in the same
manner.
In order to examine the correlation between the principal coordinate

axes with BMI, we used hierarchical linear regression models by race with
BMI as the outcome and the principal coordinate axis, age and smoking
status as predictors, allowing for correlation by subject within family.

Analyses of determinants of overall gut microbiota composition
We used the Adonis function in the R vegan package50 to perform
permutational ANOVA of the unweighted and weighted UniFrac23 distance
matrices of each of the four studies analyzed. The predictors in these
models varied according to the unique characteristics of each study. We
included race (white or black), overweight/obese (ow/ob) status, their

interaction, smoking status and age in the Obese Twins study; race/
ethnicity (NHW, black, or Hispanic), ow/ob status, their interaction, smoking
status, age and sex in AG; ethnicity (NHW or Hispanic), ow/ob status, their
interaction, age and sex in EPOCH; and ow/ob status, age and sex in the
Mexico City cohort. We performed this analysis using the maximum
rarefaction level that allowed inclusion of all samples in each study, as well
as at 1000 sequences per sample, which was the minimum rarefaction
level across studies.

Analyses of alpha diversity and BMI
In Obese Twins, we examined the relationship between alpha diversity and
BMI using hierarchical linear regression models of BMI as a function of each
of the standardized diversity measures (Shannon Diversity Index and PD
Whole Tree) by race/ethnicity with correlation by subject within family. We
controlled for age and smoking status. We used similar non-hierarchical
linear regressions in the other three cohorts, controlling for the following
potential confounding variables: sex, age, and smoking status in AG; sex
and age in EPOCH; sex, age, HIV status and sexual practices (men who have
sex with men versus not) in Mexico City.

Analysis of Prevotella and BMI
We examined the relationship between Prevotella and BMI using the same
methods as described above for alpha diversity. We modeled Prevotella
using standardized relative abundance as well as the ratio of Prevotella
relative abundance to the sum of the relative abundance of Prevotella and
Bacteroides, as used previously.15,40 We used adjusted R2 to choose the
better predictor of BMI.

Evaluation of interactions with diet and smoking status
In the models of alpha diversity and Prevotella, described above, we
checked for interactions with smoking and three dietary measures that we
hypothesized may influence the gut microbiota-obesity relationship: fiber,
fat, and meat intake. Smoking was only available for Obese Twins and AG;
diet was additionally available in EPOCH. Diet was measured differently in
AG compared to the other two studies; we chose the number of different
types of plant consumed as the best marker for fiber; the only measure of
meat and fat intake was a single measure called “high fat red meat.” In
order to visualize significant interactions, we categorized alpha diversity
and fiber as high (top quartile) and low-moderate (bottom 3 quartiles);
plant intake as high (≥21) and low-moderate (≤20); high fat red meat as
frequent (3–5 times per week or more) and low (<3 times per week). We
categorized high versus low Prevotella relative abundance slightly
differently in the two studies due to the vastly different distributions,
and to create a reasonable distribution of data across the categories. In
Obese Twins, we used the top tertile to define high Prevotella, and in AG,
we used the mean.

Evaluation of the confounding by smoking status
Associations between smoking and (1) alpha diversity, (2) Prevotella, and
(3) BMI, were examined using regressions similar to those described for
alpha diversity, but with alpha diversity/Prevotella / BMI as the outcomes
and smoking status (non-imputed) as the primary exposure. We controlled
for age and race in Obese Twins, and age, race/ethnicity, and sex in AG.
For these analyses, we used R v3.5.0,49 SAS V9.4 (SAS Institute Inc., Cary,

North Carolina), and Qiime v1.9.1.51 We considered two-sided p-values of
0.05 or less as statistically significant.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data from the Obese Twins and AG data are available online (https://zenodo.org/
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