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Clinical Outcomes During a Behavioral- Based Weight 
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Objective: Identifying predictors of weight loss and clinical outcomes 
may increase understanding of individual variability in weight loss  
response. We hypothesized that baseline multiomic features, including 
DNA methylation (DNAme), metabolomics, and gut microbiome, would 
be predictive of short- term changes in body weight and other clinical 
outcomes within a comprehensive weight loss intervention.
Methods: Healthy adults with overweight or obesity (n  =  62, age  
18- 55 years, BMI 27- 45 kg/m2, 75.8% female) participated in a 1- year 
behavioral weight loss intervention. To identify baseline omic predictors 
of changes in clinical outcomes at 3 and 6 months, whole- blood DNAme, 
plasma metabolites, and gut microbial genera were analyzed.
Results: A network of multiomic relationships informed predictive mod-
els for 10 clinical outcomes (body weight, waist circumference, fat mass, 
hemoglobin A1c, homeostatic model assessment of insulin resistance, 
total cholesterol, triglycerides, C- reactive protein, leptin, and ghrelin) that 
changed significantly (P < 0.05). For eight of these, adjusted R2 ranged 
from 0.34 to 0.78. Our models identified specific DNAme sites, gut mi-
crobes, and metabolites that were predictive of variability in weight loss, 
waist circumference, and circulating triglycerides and that are biologically 
relevant to obesity and metabolic pathways.
Conclusions: These data support the feasibility of using baseline multi-
omic features to provide insight for precision nutrition– based weight loss 
interventions.

Obesity (2021) 29, 859-869. 

Introduction
Despite significant efforts to address the increasing prevalence of overweight and obesity, 
rates have continued to climb over the past two decades (1). Obesity has multiple etiologies 
and it is associated with a range of adverse health consequences, including cardiovascular 
disease (2,3). Current behavioral- based weight loss interventions typically produce on av-
erage only modest (~5%- 10%) weight loss (4,5). However, focusing on this mean response 
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Study Importance

What is already known?
►	High interindividual variability in weight 

loss response is a critical barrier to alter-
ing the current obesity epidemic.

►	The gut microbiome, DNA methylation, 
and metabolomics are unique to each in-
dividual and are associated with obesity, 
weight loss, and phenotypic variability.

What does this study add?
►	For 8 of 10 clinical outcomes, including 

weight loss, statistically significant pre-
dictive models identified baseline multi-
omic predictors with robust effect sizes.

►	Multiomic predictors were associated with 
known targets or pathways with biological 
relevance to obesity and weight loss.

How might these results change the 
direction of research or the focus of 
clinical practice?
►	These predictors can aid in generating 

specific hypotheses regarding metabolic 
pathways such as lipid metabolism, in-
sulin signaling, and substrate use.

►	The predictor networks provide evi-
dence that the gut microbiome, epig-
enome, and metabolome interact with 
each other in a concerted manner.

►	Using baseline multiomic predictors for 
weight loss response is feasible and 
may inform future behavioral weight loss  
interventions applying precision nutrition 
approaches.
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conceals the marked interindividual variability, with some individuals 
losing a substantial amount of weight and others losing no weight or 
even gaining weight during behavioral weight loss interventions (6). 
Variability of weight loss outcome is an important problem in the treat-
ment of obesity, and understanding the factors underlying this variabil-
ity may provide clues to more effectively tailor treatments for patients 
with precision nutrition approaches as described by others (7,8).

Contributors to interindividual variability in both weight loss and associ-
ated metabolic responses include genetics, epigenetics, gut microbiome 
(GM), and metabolomics (9,10). These inputs offer valuable molecular 
information, potentially serving as biomarkers of obesity, weight loss 
response, and heterogeneity in clinical outcomes. Demonstrating the 
predictive value of these molecular features is a first step toward iden-
tifying subphenotypes, which are small groups of individuals with sim-
ilar baseline characteristics that vary in their response to intervention 
(11). By considering underlying biological systems, future behavioral 
weight loss programs can move away from a “one size (one interven-
tion) fits all” approach.

The purpose of this study is to identify baseline multiomic predictors of 
weight loss and clinical outcomes within an ongoing, behavioral- based 
weight loss trial (the “parent trial”), a prospective randomized trial 
comparing weight loss generated by daily caloric restriction (DCR) ver-
sus intermittent fasting (IMF). Because the parent trial is ongoing, we 
do not report between- group differences. We hypothesized that baseline 
omic features, including DNA methylation (DNAme), GM, and circu-
lating metabolites, could predict short- term weight loss and clinical out-
comes. We created predictive models for 10 clinical outcomes showing 
a significant change from baseline, and we present details of the mod-
els for weight, waist circumference (WC), and triglycerides (TG). We 
selected these models for discussion because (1) change in weight is the 
primary outcome of the parent trial, and (2) among the other outcomes, 
the models for WC and TG represent the range of model complexity.

Methods
Participants and weight loss intervention
We conducted an ancillary study that included healthy men and women 
with overweight or obesity (age 18- 55 years, BMI 27- 45 kg/m2) par-
ticipating in an ongoing, two- arm randomized trial (ClinicalTrials.gov 
NCT03411356) comparing weight loss generated by DCR versus IMF. 
All participants received a 12- month guidelines- based, comprehensive, 
behavioral weight loss intervention consisting of an energy- restricted 
diet, increased physical activity, and group- based behavioral support. 
Participants in both randomized groups targeted an identical weekly 
dietary energy deficit (34%) from estimated individual weight main-
tenance energy requirements and differed only in the dietary strategy 
used to achieve this energy deficit. The DCR group targeted a 34% daily 
energy deficit, whereas the IMF group targeted an 80% energy deficit 
on three nonconsecutive “fast” days a week and were instructed to eat 
their usual baseline weight maintenance diet on fed days. We used bio-
specimens and clinical outcomes collected at baseline, 3 months, and 
6 months in n = 62 participants in both arms of the first two cohorts of the 
parent study (DCR = 27, IMF = 35) enrolled in 2018- 2019 (CONSORT 
diagram in Supporting Information, section 1.1.2). This study was ap-
proved by the University of Colorado Multiple Institutional Review 
Board. Participants provided informed consent in accordance with the 
principles described in the Declaration of Helsinki of 1975, revised in 
1983. Additional details regarding the parent trial, including inclusion/

exclusion criteria and a detailed description of study procedures and 
clinical outcomes, are provided in the Supporting Information.

Clinical outcomes
Measurements of clinical outcomes, including weight, BMI, WC, sys-
tolic blood pressure (SBP), diastolic blood pressure, and body compo-
sition (dual energy X- ray absorptiometry), were conducted by trained 
study personnel. Methods are detailed in Supporting Information.

Biospecimens
Twelve- hour fasting whole- blood samples were processed for plasma 
or immediately frozen and stored at −80°C. Plasma was assessed for 
glucose, insulin, total cholesterol (T. Chol), high- density lipoprotein 
cholesterol, low- density lipoprotein cholesterol, TG, leptin, ghrelin, 
peptide YY, hemoglobin A1c, and C- reactive protein (CRP). Plasma 
betaine, choline, carnitine, trimethylamine (TMA), and TMA  N- 
oxide  concentrations were determined by a targeted metabolomics 
assay using liquid chromatography/mass spectrometry. Genomic DNA 
was isolated from whole- blood samples. DNAme was assessed using 
the Illumina Infinium Human Methylation EPIC BeadChip Array 
(EPIC 850K). Stool samples were self- collected by participants. DNA 
extracted from homogenized fecal isolates was analyzed for 16S rRNA 
genes. Additional details are in Supporting Information.

Multiomic data analysis
A combined multiomic data set was created from baseline metabolites 
(number of features, p = 5), baseline GM (p = 46, retaining those genera 
with at least 15 of the 56 samples having relative abundance > 0.003 [10 
reads]), and baseline DNAme (p = 250, retaining the 250 probes with the 
lowest P values comparing baseline with 3 months). To capture the most 
robust responses in clinical outcomes, we calculated changes in clinical 
outcomes based on the earliest available timepoint (3 months for anthro-
pometric measures, 6 months for body composition and blood chemis-
try). The multiomic data were combined with change data for 10 clinical 
outcomes for which there was a significant difference between baseline 
and the subsequent timepoint (weight, WC, FM, hemoglobin A1c, ho-
meostatic model assessment of insulin resistance, T. Chol, TG, CRP, 
leptin, ghrelin), excluding technical correlates of other measurements 
(BMI, glucose, and insulin). We fit a linear model to each pair of features 
spanning the assays (e.g., change in WC  ~  baseline Bifidobacterium) 
(Figure 1B). To eliminate relationships potentially driven by outliers, we 
removed those models with a maximum standardized difference in fit 
value > 5 (76 models). We then created a network from the 25 mod-
els with the smallest slope P values from each assay pair, subject to P 
value < 0.05. Hereafter, we call this the multiomic network.

For each clinical outcome, we built a linear regression model contain-
ing all omic features in the network neighborhood of order 2, as well 
as potential confounders of age, sex, and the baseline value of the mod-
eled outcome. Each model included only those participants for whom 
there was no missing data for the included predictors. We performed 
model selection using stepwise backward selection, with Akaike infor-
mation criterion as the selection statistic. We allowed this process to 
eliminate both omic markers and potential confounders. To account for 
overfitting, we permuted outcome values 10,000 times and rederived 
both full and reduced models, calculating P values as the fraction of 
times adjusted R2 from the permuted model was greater than that from 
the observed data. Additional details are in Supporting Information. All 
analysis was performed in R version 3.5.1.
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Results
Demographics and clinical outcomes
Characteristics of study participants are shown in Tables 1 and 2. Of the 62 
participants, 75.8% were female, the mean age (SD) was 40.8 (9.7) years, 
and the mean baseline BMI was 33.2 (4.3) kg/m2. Mean weight loss at 
month 3 was 5.9 (3.8) kg (range −15.9 to −0.4, P = 3.6 × 10−18) and at 
month 6 was 8.1  (5.8) kg. With the exception of SBP, diastolic blood 
pressure, low- density lipoprotein cholesterol, high- density lipoprotein 
cholesterol, and peptide YY, all clinical outcomes showed a statistically 
significant change at the analyzed timepoints (Table  2). The 6- month 

values for weight, BMI, WC, and SBP are presented in Supporting 
Information Table S2. Of the 42 participants with complete diet diaries 
(7 days at baseline and 3 months), the mean percentage decrease from 
baseline in self- reported weekly energy intake was 27.9% (21.4%) (range 
−68.1% to 12.4%), equating to approximately 526 kcal/d.

From data sets to a multiomic network
An overview of data sets and network generation is depicted in 
Figure 1. Participants were monitored for 6 months, with clinical out-
comes assessed at baseline and again at 3 and/or 6 months, as shown in 

Figure 1 Overview of data sets and network generation. (A) Participants were monitored for 6 months, with clinical outcomes assessed at baseline and at 3 and/or 
6 months, depending on the outcome. Outcomes are grouped into anthropometric measures, body composition as measured by dual energy X- ray absorptiometry, 
and blood chemistry. Tissues drawn at baseline were interrogated by DNA methylation (DNAme) array, targeted metabolomics, and 16S rRNA sequencing assays. N 
indicates the maximum number of participants with complete data for the analysis. For calculating change in clinical outcomes, data were required both at baseline and 
at 3 and/or 6 months. (B) Pairwise regression models were fit across four data categories (change in clinical outcome, baseline DNAme, baseline metabolites [Mtb], and 
baseline gut microbiome [GM]). The top 25 results per assay pair, based on smallest slope P value subject to P < 0.05, were summarized in a multiomic network. The 
number of samples and number of features in each data category (e.g., n = 56 samples and p = 250 features for DNAme) are shown on the rectangles representing the 
categories. The number of pairwise comparisons across categories is indicated on the line connecting the categories. In the multiomic network, each node represents 
a feature, and each edge represents a regression between two features from different categories. The categories are color- coded according to the legend.

A

B
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Figure 1A. Omic features were assessed at baseline. Sixty- two partic-
ipants were selected for multiomic analysis. Of these, six did not con-
sent to metabolomic analysis (remaining n = 56). Three did not submit 
stool samples, and another three stool samples were omitted because 
of low- quality sequencing (remaining n = 56). Figure 1B illustrates the 
steps in building the multiomic network: performing pairwise regres-
sions across all omes, filtering results to retain the most promising, and 
summarizing these in a network. Each node represents a feature, and 
each edge a regression between two features from different omes.

Visualizing crossomic relationships using VOLARE
A representative example of a subnetwork is shown in Figure 2A, 
which illustrates associations between change in TG levels and four 

gut microbial genera, three DNAme probes, and two metabolites. 
Figure 2B- 2C shows detailed plots of the relationships between 
change in TG and baseline DNAme of a CpG, cg18366782, which is 
not annotated to any gene (Figure 2B), and baseline metabolite con-
centration of TMA (Figure 2C). The fitted regression lines show neg-
ative associations, representing larger reductions in TG in individuals 
who had higher baseline levels of DNAme of cg18366782 (r = −0.46, 
P = 0.0004) or TMA (r = −0.32, P = 0.0199). Visualizing these pair-
wise relationships in the VOLARE framework (12) allows us to vet 
the underlying data for magnitude and dynamic range, assess the re-
lationship for goodness of fit, and borrow information from a feature 
in one ome to better understand a feature in another ome. For exam-
ple, cg18366782 is not annotated to any particular gene yet is well 
correlated with change in TG levels.

From network neighborhoods to predictive 
models
The overall network depicting the relationships between all clinical and 
omic features, first described in Figure 1B, is shown in greater detail in 
Figure 3A. Clinical outcome nodes are labeled, with the size of the node 
proportional to the size of its neighborhood of order 2 (the number of its 
neighbors and its neighbors’ neighbors). Neighborhoods are shown for 
change in weight (Figure 3B), WC (Figure 3C), and TG (Figure 3D). 
In each of these neighborhoods, clinical outcomes are connected to fea-
tures from each of the three omes. The neighborhoods range in size 
from 12 predictors for weight to 21 predictors for TG. All nonclini-
cal nodes in the neighborhood were used as predictors in the model- 
building process. The nodes retained in the predictive models are larger 
than the nodes eliminated by backward selection.

TABLE 1 Participant demographics

Variable Group

N 62
Age (mean ± SD) 40.8 ± 9.7

Sex (%) Female 47 (75.8)
Male 15 (24.2)

Race: ethnicity (%) Caucasian: Hispanic 10 (16.1)
Caucasian: non- Hispanic 45 (72.6)
Non- Caucasian: non- Hispanic 7 (11.3)

TABLE 2 Weight loss and clinical outcomes following a behavioral weight loss intervention

Baseline 3 months Change at 3 months
Change at 3 months, 

P value n

Body weight (kg) 95.3 ± 16.3 89.4 ± 15.3 −5.9 ± 3.8 3.6 × 10−18 62
BMI (kg/m2) 33.2 ± 4.3 31.1 ± 4.1 −2.1 ± 1.3 1.2 × 10−18 62

Waist circumference (cm) 108.4 ± 10.8 100.3 ± 10.7 −8.1 ± 5.4 2.7 × 10−17 62

Systolic BP (mmHg) 117.7 ± 13.5 115.0 ± 11.3 −2.9 ± 11.9 6.5 × 10−2 61

Diastolic BP (mmHg) 74.6 ± 8.1 75.7 ± 9.0 1.0 ± 10.9 4.9 × 10−1 61

Baseline 6 months Change at 6 months. Change at 6 months, P value n

Fat mass (kg) 34.6 ± 8.3 29.0 ± 8.8 −5.2 ± 3.8 2.6 × 10−14 57

HbA1c (%) 5.5 ± 0.3 5.4 ± 0.3 −0.1 ± 0.2 5.9 × 10−3 57

Glucose (mg/dL) 93.0 ± 10.0 90.4 ± 7.6 −2.6 ± 9.7 4.5 × 10−2 57

Insulin (uIU/mL) 11.1 ± 7.2 8.3 ± 5.9 −3 ± 5 3.8 × 10−5 57

HOMA- IR (mass units) 2.6 ± 2 1.9 ± 1.4 −0.8 ± 1.3 3.9 × 10−5 57

T. Chol (mg/dL) 187.0 ± 40.7 178.5 ± 36.2 −10.4 ± 23 1.3 × 10−3 57

Triglycerides (mg/dL) 143.0 ± 87.1 111.4 ± 60.6 −34.6 ± 63.9 1.6 × 10−4 57

HDL (mg/dL) 48.6 ± 12.6 49.6 ± 12.2 0.8 ± 6.7 4.1 × 10−1 57

LDL (mg/dL) 109.4 ± 35.9 106.1 ± 30.1 −4.3 ± 21 1.3 × 10−1 57

CRP (mg/L) 5.0 ± 5.1 3.6 ± 4.5 −1.5 ± 4 8.0 × 10−3 57

Leptin (ng/nL) 68.3 ± 43.8 35.9 ± 23.9 −30.6 ± 33.3 1.0 × 10−8 55

Ghrelin (pg/mL) 902.8 ± 345.6 1,026.0 ± 425.5 124.6 ± 295.4 2.6 × 10−3 57

PYY (pg/mL) 92.7 ± 35.4 89.9 ± 26.6 −2.4 ± 30.9 5.7 × 10−1 57

Differences in parameters between baseline and subsequent time points were analyzed using paired t tests. Significance was set at P < 0.05 as indicated by bold P values. 
BP, blood pressure; HbA1c, hemoglobin A1c; HDL, high- density lipoprotein; HOMA-  CRP, C- reactive protein; IR, homeostatic model assessment of insulin resistance; LDL, low- 
density lipoprotein; PYY: peptide YY; T. Chol, total cholesterol.
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The reduced models for all 10 clinical outcomes included omic 
predictors, with the exception of FM. For FM, the reduced model 
consisted only of the mean value of FM, suggesting that we did 
not identify any good predictors. Of the remaining nine mod-
els, eight (weight, WC, homeostatic model assessment of insulin 
resistance, T. Chol, TG, CRP, leptin, and ghrelin) had adjusted R2 
values ranging from 0.34 to 0.78, and permutation P values rang-
ing from <0.0001 to 0.0118. Summary statistics for these reduced 
models are shown in Supporting Information Figure S1, with addi-
tional details in Supporting Information Table S1. Model details for 
weight, WC, and TG are presented below, with scatterplot matrices 
and pairwise correlation coefficients for the baseline values of the 
outcome, change in the outcome, and the omic predictors provided 
in Supporting Information Figures S2- S4.

Predictive models for change in weight, WC, and 
TG
The predictive model for change in weight is shown in Figure 4 
(adjusted R2 = 0.48, permutation P < 0.0001). This model predicts 
change in weight using baseline levels of DNAme of a CpG site in the 
phosphofurin acidic cluster sorting 2 gene (PACS2) gene and four mi-
crobial genera. The relative importance of each predictor is expressed 
as an interquartile range (IQR) effect size (13). This represents the 
estimated change in response (e.g., weight) associated with a change 
in a predictor from the 25th percentile (first quartile) to the 75th 
percentile (third quartile), with all other predictors held constant. 
Increased methylation of cg25543749, ranging from 85.4% at the 
25th percentile to 87.5% at the 75th percentile, was disadvantageous 
for weight loss, with an IQR effect size of 1.6 kg. This suggests that, 
all other factors being equal, a person with methylation of 85.4% 
is predicted to lose 1.6 kg more than a person with methylation of 
87.5%. The converse is also true. Coprococcus 3, a microbe, was 
advantageous for weight loss, with an IQR effect size of −1.6  kg. 
In absolute terms, the largest effect sizes were ~ 25% of the mean 
change in weight.

The model for change in WC is illustrated in Figure 5 (adjusted 
R2  =  0.34, permutation P =  0.0118). Baseline methylation of 
cg15869128 was advantageous for reduced WC, with an IQR of 
2.25 cm. Increased baseline WC was also advantageous for reduced 
WC, with an IQR effect size of −1.6. In contrast, both Bacteroides and 
Lachnospiraceae were disadvantageous for reduced WC. In absolute 
terms, the largest effect sizes were ~ 27% to 30% of the mean change 
in WC.

The model for change in TG is shown in Figure 6 (adjusted R2 = 0.76, 
permutation P = 0.0003). This was the most complex model, concor-
dant with the size of the TG node (Figure 3A). Carnitine and TMA have 
effect sizes of similar magnitudes, though in opposite directions. High 
baseline TG levels were associated with a large decrease in TG, with 
an IQR effect size of −42 mg/dL. All but one of the remaining predic-
tors showed effect sizes that, in absolute terms, were over 25% of the 
mean change in TG. Baseline relative abundance of the gut microbes 
Faecalibacterium and Blautia were associated with greater reductions 
in TG, with IQR effect sizes of −24 and −10, respectively. Male partic-
ipants were predicted to have a 16 mg/dL disadvantage in reduction in 
TG, with all other factors held constant.

Discussion
In this study, our goal was to identify baseline omic predictors of 
short- term weight loss and clinical outcomes during a behavioral- 
based weight loss intervention. Our results demonstrate that baseline 
multiomic features can provide important clinical insight at both the 
aggregate and individual participant level. Collectively, this work is a 
first step toward the development of precision nutrition approaches for 
weight loss and improved metabolic health, guided by baseline mul-
tiomic predictive models. The Diogenes study, a multicenter European 
dietary intervention, supported related work. Meyer et al. consider a bi-
nary predictor of changes in insulin sensitivity using clinical measure-
ments and plasma metabolites and lipids (14). Ruffieux et al. present 

Figure 2 Multiomic associations with change in triglycerides (TG). (A) Associations between change in TG and nine multiomic features: four gut microbial 
genera, three DNA methylation (DNAme) probes, and two metabolites. (B) A detailed plot showing the relationship between change in TG and baseline 
DNAme of a CpG site, cg18366782, which is unannotated. Each circle represents one study participant colored by sex (green = female, brown = male). 
The fitted regression line shows a negative association with larger reductions in TG corresponding to higher baseline levels of DNAme (r = −0.46, 
P  =  0.0004). (C) Detailed plot for the relationship between change in TG and baseline concentration of metabolite trimethylamine (TMA). The fitted 
regression line shows a negative association with larger reductions in TG corresponding to higher levels of TMA (r = −0.32, P = 0.0199).
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a computationally efficient approach to identify associations between 
SNPs and metabolites (15). Our work differs in that we consider three 
different omes and multiple continuous clinical outcomes.

Change in weight
Participants lost, on average, 5.9 kg of weight from baseline to month 
3, which is consistent with other behavioral weight loss programs (16). 
This degree of modest weight loss, even in the short term, has been 
shown to improve disorders associated with obesity, such as hyperten-
sion, dyslipidemia, and cardiovascular disease (17). However, the range 
of weight loss at 3 months (−15.9 to −0.4 kg) demonstrates wide inter-
individual variability. We identified five predictors of change in weight 
that included four gut microbes and one DNAme site.

Both Ruminococcaeae NK4A214 and Coprococcus 3 were advan-
tageous for weight loss (Figure 4). Ruminococcaeae NK4A214 was 
higher in people without obesity as compared with individuals with 
obesity (18). Higher Coprococcus was associated with reduced weight 
gain in mice fed a high- fat diet for 12 weeks (19). Protective effects 

may be related to the ability of Coprococcus species to produce butyr-
ate (20). Butyrate is a short- chain fatty acid (SCFA) resulting from gut 
microbial fermentation of dietary fiber that is well- known for its ben-
eficial health effects and anti- inflammatory properties, and it acts as a 
histone deacetylase inhibitor, linking it to epigenetic effects (21).

Both Ruminococcaceae UCG 014 and Eubacterium coprostanoli-
genes were disadvantageous for weight loss. Ruminococcaea UCG 014 
decreased with intermittent administration of a fasting- mimicking diet 
in mice (22). Eubacterium coprostanoligenes has been shown to convert 
cholesterol to coprostanol (23), an indicator of a cholesterol- rich diet (24). 
This may reflect that individuals with baseline high- cholesterol diets were 
less responsive to diet intervention, but further investigation is needed.

The DNAme site cg25543749 was also disadvantageous for weight 
loss, with a percentage change in methylation of 2.1 predictive of 
an  ~1.6  kg change in weight. This site is located within intron 20 
of the phosphofurin acidic cluster sorting 2 gene (PACS2), which 
is involved in metabolism and insulin signaling. Phosphorylation 

Figure 3 Clinical neighborhoods of order 2. (A) The overall network with clinical outcomes labeled and sizes of the 
clinical nodes proportional to the size of their neighborhood of order 2. (B- D) Neighborhoods for change in weight, 
waist circumference (WC), and triglycerides (TG). Nodes retained in the predictive model after the model selection 
process are larger than the eliminated nodes. Color- coding as per panel A.

A

C D

B

 1930739x, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oby.23127 by U

niversity O
f C

olorado D
enver, W

iley O
nline Library on [16/06/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Obesity

www.obesityjournal.org  Obesity | VOLUME 29 | NUMBER 5 | MAY 2021     865

Original Article
OBESITY BIOLOGY AND INTEGRATED PHYSIOLOGY

of PACS2 has been associated with lipogenesis via mitochondrial- 
associated membrane interactions and inhibition of sirtuin 1 activity 
(25,26); sirtuin 1 is a NAD +- dependent histone deacetylase and is a 
key nutrient sensor responsive to fasting (27). Thus, PACS2 is a bio-
logically relevant gene target in the context of obesity, weight loss, 
and metabolism.

Change in WC
Participants lost, on average, 8 cm of WC from baseline to month 3. 
Reductions in WC with weight loss are associated with greater im-
provements in components of the metabolic syndrome than changes 
in weight or BMI alone (28). The five predictors in the WC model 
(Figure 5) included two gut microbes, two DNAme sites, and base-
line WC. Bacteroides and Lachnospiraceae were disadvantageous for 

reductions in WC. Relative abundance of the genus Bacteroides has 
been associated with leanness in several studies (29), and Bacteroides 
uniformis protected against metabolic dysfunction in diet- induced 
obesity in mice (30). Bacteria in the family Lachnospiraceae that 
were undefined at the genus level had a large effect size in this 
model, but represent a heterogeneous group that is poorly defined 
functionally and may warrant further investigation at the sequence 
variant level.

One of the DNAme sites associated with reductions in WC was 
cg15869128, which is annotated to the first intron of the Fc fragment 
of IgG receptor and transporter (FCGRT) gene, a genomic location that 
is also a predicted promoter region for FCGRT. FCGRT is involved in 
passive immunity during early development and adaptive immunity 

Figure 4 Predictive model for change in weight at 3 months. (A) Waterfall plot illustrates variability in the change in weight, with each bar 
representing one study participant. (B) Interquartile range (IQR) effect sizes with predictors ordered by the effect size. The IQR effect size 
is the change in response associated with a change in a predictor from the first quartile (Q1, 25th percentile) to the third quartile (Q3, 
75th percentile), which includes 50% of the data values. These effect sizes represent the relative importance of the predictors rather 
than shifts in the graph or the relative magnitude of predictors. (C) The cumulative fit graph displays estimated response (change in 
weight) by accumulating the contribution of one predictor at a time. Points represent the cumulative fit as various predictors are added 
to the total, with point shape and color representing the type of data. The gray line segments connect the points for each participant. 
To better illustrate the concept of the participant- level detail, the data for the participant with the highest level of Ruminococcaceae.
UCG.014 are shown in orange. The points on the gray vertical line toward the right side of the graph represent estimated response 
for each participant, whereas the right- most dark gray points indicate the observed responses. The dotted blue horizontal line at 
zero indicates no change in weight. A dotted red “trend line” connects the mean cumulative value at each predictor. The predictors 
are ordered by mean contribution to the fit, from highest to lowest. The intercept is not shown. DNAme, DNA methylation; GM, gut 
microbiome. [Color figure can be viewed at wileyonlinelibrary.com]
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throughout life (31). However, FCGRT has not been shown to be pre-
viously associated with WC, obesity, or weight loss. The DNAme site 
cg07213036 was also associated with reductions in WC. This site is 
annotated to the caudal type homeobox (CDX2) gene and located within 
a statistically significant differentially methylated region (Supporting 
Information Table  S3), indicating that it was methylated in a similar 
manner as surrounding CpG sites. CDX2 has been associated with WC 
and adiposity phenotypes (32) in a genetic variant of CDX2, rs11568820. 
Thus, CDX2 methylation may warrant additional investigation.

Change in TG
On average, TG decreased by 35 mg/dL over 6 months. The 13 pre-
dictors in the TG model (Figure 6) include three gut microbes, two 
metabolites, six DNAme sites, baseline TG levels, and sex. Among 

blood lipids, TG has previously shown the strongest association with 
GM (33). Faecalibacterium and Blautia are associated with decreases 
in TG. The only described species in the Faecalibacterium genus is F. 
prausnitzii, one of the most abundant butyrate- producing species in 
the human gut (20). The Blautia genus has shown inconsistent rela-
tionships with cardiometabolic measures. Some studies have shown 
increased abundance with type 2 diabetes (34) and obesity (35), 
whereas another study has shown lower abundance with visceral fat 
(36). Although the effects of SCFA on metabolism are thought to be 
predominantly protective, increased levels of SCFA have been seen 
with obesity, which could represent an increased ability to harvest 
calories from food among individuals with obesity (37). In contrast, 
Ruminococcus gnavus was disadvantageous for reductions in TG. 
R. gnavus has been associated with obesity and metabolic disorders 

Figure 5 Predictive model for change in waist circumference at 3 months. (A) Waterfall plot illustrates variability in the change in waist circumference 
(WC), with each bar representing one study participant. (B) Interquartile range (IQR) effect sizes, with predictors ordered by the effect size. The IQR 
effect size is the change in response associated with a change in a predictor from the first quartile (Q1, 25th percentile) to the third quartile (Q3, 75th 
percentile), which includes 50% of the data values. (C) The cumulative fit graph displays estimated response (change in WC) by accumulating the 
contribution of one predictor at a time. Points represent the cumulative fit as various predictors are added to the total, with point shape and color 
representing the type of data. The gray line segments connect the points for each participant. The points on the gray vertical line toward the right 
side of the graph represent estimated response for each participant, whereas the right- most dark gray points indicate the observed responses. The 
dotted blue horizontal line at zero indicates no change in WC. A dotted red “trend line” connects the mean cumulative value at each predictor. The 
predictors are ordered by IQR effect size, low to high. The intercept is not shown. DNAme, DNA methylation; GM, gut microbiome. [Color figure can 
be viewed at wileyonlinelibrary.com]
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(38). It consumes mucins in the intestine and produces inflammatory 
polysaccharides (39), which could lead to intestinal dysbiosis that 
might exacerbate high TG.

Five of the six CpGs predictive of changes in TG are annotated to 
genes. Although cg18366782 is not proximal to any protein- coding 
genes, it was strongly associated with reductions in TG, which sug-
gests that methylation of this CpG might warrant further investiga-
tion. Of the five remaining sites, four are annotated to genes that 
have not been previously associated with TG, weight loss, or obesity 
(Figure 6). Two sites, cg10754777 and cg11336484, are located in 
statistically significant differentially methylated regions (Supporting 

Information Table S3). The DNAme site cg08222185 is annotated to 
the leukemia inhibitory factor receptor (LIFR) gene, a potential obe-
sity drug treatment target (40), and is associated with lipogenic sig-
naling in 3T3- L1 adipocytes (41). LIFR is known to heterodimerize 
with ciliary neurotrophic factor (CNTF), which may increase fatty 
acid oxidation and reduce insulin resistance in skeletal muscle via 
AMP- activated protein kinase activation (42).

The two metabolites in this model, carnitine and TMA, are highly cor-
related in our data (r  =  0.99) and are indicated in Figure 3D by the 
preponderance of edges connecting microbes and DNAme probes to 
both carnitine and TMA. Carnitine, a nutrient abundant in red meat, is 

Figure 6 Predictive model for change in triglycerides (TG) at 6 months. (A) Waterfall plot illustrates variability in the change in TG, with each bar representing 
one study participant. (B) Interquartile range (IQR) effect sizes are shown below the graph, with predictors ordered by the effect size. The IQR effect size is 
the change in response associated with a change in a predictor from the first quartile (Q1, 25th percentile) to the third quartile (Q3, 75th percentile), which 
includes 50% of the data values. The effect size for sex is the difference in estimate for males. (C) The cumulative fit graph displays estimated response 
(change in TG) by accumulating the contribution of one predictor at a time. Points represent the cumulative fit as various predictors are added to the total, 
with point shape and color representing the type of data. The gray line segments connect the points for each participant. The points on the gray vertical line 
toward the right side of the graph represent estimated response for each person, whereas the right- most dark gray points indicate the observed responses. 
The dotted blue horizontal line at zero indicates no change in TG. A dotted red “trend line” connects the mean cumulative value at each predictor. The 
predictors are ordered by mean contribution to the fit, from lowest to highest. The intercept is not shown. DNAme, DNA methylation; GM, gut microbiome; 
Mtb, metabolite. [Color figure can be viewed at wileyonlinelibrary.com]
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metabolized by gut microbes into TMA, which is associated with car-
diovascular disease (43). Although we did not perform any fine- tuning 
of our models, this correlation, coupled with the opposite directions of 
effects, suggests that one of these metabolites is a candidate for removal 
in a future model.

Overall limitations
Despite salient and innovative qualities of the present study, there 
are limitations. The sample size was not adequate to capture the full 
diversity of the general population. The participants were primar-
ily Caucasian females (64.5%), limiting generalizability. Although 
anthropometric measures were available at baseline and 3  months, 
blood chemistry was available at baseline and 6  months, per the 
protocol of the parent trial. Because the study is ongoing, we were 
blinded to intervention group assignment, which could be associated 
with additional variability in clinical outcomes that we were not able 
to model. We did not incorporate the role of dietary intake in our 
models. DNAme was measured in whole- blood samples rather than 
a metabolically active tissue like adipose, skeletal muscle, or liver. 
Whole blood is easier to obtain, thus facilitating measures at multiple 
time points. Furthermore, DNAme patterns in whole- blood can serve 
as a surrogate for those found in target tissues, such as adipose tissue 
(44). Because our long- term goal is to uncover modifiable predic-
tors, we filtered DNAme to probes that were altered over time. Other 
filtering strategies were not investigated. Overall, our discussions of 
biological relevance are based on published literature and are asso-
ciative in nature. However, the study has generated testable hypothe-
ses for future experiments on metabolic targets and pathways.

Overall strengths
By integrating omic data from biological systems known to interact 
and contribute to heterogeneity in clinical outcomes, we established 
the feasibility of using baseline omic features to predict clinical out-
comes. These multiomic models are interpretable and parsimonious, 
at a level of detail that supports hypothesis generation and experi-
mental follow- up. For example, PACS2 gene and protein expression 
could be examined to further validate PACS2 as a biomarker or test 
its role in a causal pathway. In addition, the identified predictors 
could be tested for association with longer- term weight loss (6 and 
12  months) and weight loss maintenance (18  months). A possible 
approach is presented in Supporting Information Table S4. Both the 
models and the visualization thereof account for individual variabil-
ity within and across predictors. An appreciation of this variability 
may inform the development of precision nutrition weight loss inter-
ventions. Furthermore, differences in predictors across clinical out-
comes suggest that precision nutrition– based interventions might be 
tailored to specific clinical outcomes. For example, an intervention 
targeting shifts in the GM (e.g., consumption of foods rich in pre-  
and probiotics and dietary fiber) might be appropriate for someone 
who wants to reduce body mass (8,9,45), whereas a different inter-
vention might be appropriate for someone who wants to reduce risk 
of cardiovascular disease (43).

In conclusion, using baseline omic predictors, we identified predictive 
models for changes in eight clinical outcomes during a weight loss 
intervention having adjusted R2 values > 0.33. We provided in- depth 
discussion of biologically relevant predictors for weight, WC, and TG. 
Identification of baseline predictors of response is an initial step toward 
the development of personalized weight loss interventions. These 

findings provide a foundation for combating overweight and obesity by 
working with underlying biology rather than against it. O

Acknowledgments
We thank the study participants and the clinical research team at the 
Anschutz Health and Wellness Center.

Funding agencies: This work was made possible by the support of the American 
Heart Association (18IPA34170317 to SJB), the National Institutes of Health (NIH) 
R01 DK111622 (to VAC), F32 DK122652 (to DMO), and U54 AG062319 (to PSM). 
Additionally, the Colorado Nutrition and Obesity Research Center (P30 DK048520), 
the Colorado Clinical and Translational Sciences Institute (NIH/NCATS Colorado 
CTSA grant number UL1 TR002535), and the Mayo Clinic Metabolomics Core 
(U24DK100469) provided resources and support related to outcomes measured in 
this study. ELM is supported by resources from the Geriatric Research, Education, 
and Clinical Center at the Denver VA Medical Center. Contents are the authors’ sole 
responsibility and do not necessarily represent the views of NIH, the US Department 
of Veterans Affairs, or the United States Government. The funding sources had no 
involvement in the study design; data collection, analysis, or interpretation; or in the 
writing and submitting of this work.

Disclosure: The authors declared no conflict of interest.

Author contributions: JCS, SJB, MAS, and VAC contributed to the study design; JCS, 
MAS, AZ, DMO, IRK, PJ, DI, KB, LW, and JJS analyzed the data; JCS, SJB, MAS, AZ, 
CAL, CG, and VAC interpreted the results; JCS and AZ prepared the figures and tables; 
JCS, SJB, MAS, AZ, DMO, and IRK drafted the manuscript; JCS, MAS, AZ, DMO, IRK, 
PJ, DI, KB, LW, JJS, CAL, CG, DB, PSM, ELM, DNF, VAC, and SJB edited and revised 
the manuscript; JCS, SJB, and VAC approved the final version of the manuscript

Supporting information: Additional Supporting Information may be found in the on-
line version of this article.

References
 1. Flegal KM, Kruszon- Moran D, Carroll MD, Fryar CD, Ogden CL. Trends in obesity 

among adults in the United States, 2005 to 2014. JAMA 2016;315:2284- 2291.
 2. Centers for Disease Control and Prevention. Adult obesity facts. Reviewed February 11, 

2021. Accessed July 31, 2020. https://www.cdc.gov/obesi ty/data/adult.html.
 3. Ortega- Loubon C, Fernández- Molina M, Singh G, Correa R. Obesity and its cardiovas-

cular effects. Diabetes Metab Res Rev 2019;35:e3135. doi:10.1002/dmrr.3135
 4. Tobias DK, Chen M, Manson JE, Ludwig DS, Willett W, Hu FB. Effect of low- fat diet 

interventions versus other diet interventions on long- term weight change in adults: a 
systematic review and meta- analysis. Lancet Diabetes Endocrinol 2015;3:968- 979.
doi:10.1016/S2213 - 8587(15)00367 - 8

 5. Johnston BC, Kanters S, Bandayrel K, et al. Comparison of weight loss among named 
diet programs in overweight and obese adults: a meta- analysis. JAMA 2014;312:923- 933.

 6. Herrmann SD, Willis EA, Honas JJ, Lee J, Washburn RA, Donnelly JE. Energy intake, 
nonexercise physical activity, and weight loss in responders and nonresponders: the 
Midwest Exercise Trial 2. Obesity (Silver Spring) 2015;23:1539- 1549.

 7. Zeisel SH. A conceptual framework for studying and investing in precision nutrition. 
Front Genet 2019;10:200. doi:10.3389/fgene.2019.00200

 8. Ramos- Lopez O, Milagro FI, Allayee H, et al. Guide for current nutrigenetic, nu-
trigenomic, and nutriepigenetic approaches for precision nutrition involving the pre-
vention and management of chronic diseases associated with obesity. J Nutrigenet 
Nutrigenomics 2017;10:43- 62. doi: 10.1159/00047 7729

 9. Zeisel SH. Precision (personalized) nutrition: understanding metabolic heterogeneity. 
Annu Rev Food Sci Technol 2020;11:71- 92.

 10. Aleksandrova K, Rodrigues CE, Floegel A, Ahrens W. Omics biomarkers in obe-
sity: novel etiological insights and targets for precision prevention. Curr Obes Rep 
2020;9:219- 230.

 11. Field AE, Camargo CA, Ogino S. The merits of subtyping obesity: one size does not fit 
all. JAMA 2013;310:2147- 2148.

 12. Siebert JC, Neff CP, Schneider JM, et al. VOLARE: Visual analysis of disease- associated 
microbiome- immune system interplay. BMC Bioinformatics 2019;20:432. doi:10.1186/
s1285 9- 019- 3021- 0

 13. Harrell FE. Regression Modeling Strategies: with Applications to Linear Models, 
Logistic Regression, and Survival Analysis. New York: Springer; 2001.

 14. Meyer A, Montastier E, Hager J, et al. Plasma metabolites and lipids predict insulin 
sensitivity improvement in obese, nondiabetic individuals after a 2- phase dietary inter-
vention. Am J Clin Nutr 2018;108:13- 23.

 15. Ruffieux H, Davison AC, Hager J, Irincheeva I. Efficient inference for genetic associa-
tion studies with multiple outcomes. Biostatistics 2017;18:618- 636.

 16. Franz MJ, VanWormer JJ, Crain AL, et al. Weight- loss outcomes: a systematic review 
and meta- analysis of weight- loss clinical trials with a minimum 1- year follow- up. J Am 
Diet Assoc 2007;107:1755- 1767.

 17. Goldstein DJ. Beneficial health effects of modest weight loss. Int J Obes Relat Metab 
Disord 1992;16:397- 415.

 1930739x, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oby.23127 by U

niversity O
f C

olorado D
enver, W

iley O
nline Library on [16/06/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://www.cdc.gov/obesity/data/adult.html
https://doi.org/10.1002/dmrr.3135
https://doi.org/10.1016/S2213-8587(15)00367-8
https://doi.org/10.3389/fgene.2019.00200
https://doi.org/10.1159/000477729
https://doi.org/10.1186/s12859-019-3021-0
https://doi.org/10.1186/s12859-019-3021-0


Obesity

www.obesityjournal.org  Obesity | VOLUME 29 | NUMBER 5 | MAY 2021     869

Original Article
OBESITY BIOLOGY AND INTEGRATED PHYSIOLOGY

 18. Kellerer T, Brandl B, Büttner J, Lagkouvardos I, Hauner H, Skurk T. Impact of laparo-
scopic sleeve gastrectomy on gut permeability in morbidly obese subjects. Obes Surg 
2019;29:2132- 2143.

 19. Wang Y, Tang C, Tang Y, Yin H, Liu X. Capsaicin has an anti- obesity effect through 
alterations in gut microbiota populations and short- chain fatty acid concentrations. Food 
Nutr Res 2020;64. doi:10.29219/ fnr.v64.3525

 20. Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate- producing 
bacteria from the human large intestine. FEMS Microbiol Lett 2009;294:1- 8.

 21. Chriett S, Dąbek A, Wojtala M, Vidal H, Balcerczyk A, Pirola L. Prominent action of bu-
tyrate over β- hydroxybutyrate as histone deacetylase inhibitor, transcriptional modulator 
and anti- inflammatory molecule. Sci Rep 2019;9:742. doi:10.1038/s4159 8- 018- 36941 - 9

 22. Wei S, Han R, Zhao J, et al. Intermittent administration of a fasting- mimicking diet 
intervenes in diabetes progression, restores β cells and reconstructs gut microbiota in 
mice. Nutr Metab 2018;15:80. doi:10.1186/s1298 6- 018- 0318- 3

 23. Ren D, Li L, Schwabacher AW, Young JW, Beitz DC. Mechanism of cholesterol re-
duction to coprostanol by Eubacterium coprostanoligenes ATCC 51222. Steroids 
1996;61:33- 40.

 24. Kübeck R, Bonet- Ripoll C, Hoffmann C, et al. Dietary fat and gut microbiota interac-
tions determine diet- induced obesity in mice. Mol Metab 2016;5:1162- 1174.

 25. Krzysiak TC, Thomas L, Choi Y- J, et al. An insulin- responsive sensor in the SIRT1 
disordered region binds DBC1 and PACS- 2 to control enzyme activity. Mol Cell 
2018;72:985- 998. e7.

 26. Thomas G, Aslan JE, Thomas L, Shinde P, Shinde U, Simmen T. Caught in the act 
-  protein adaptation and the expanding roles of the PACS proteins in tissue homeostasis 
and disease. J Cell Sci 2017;130:1865- 1876.

 27. Nogueiras R, Habegger KM, Chaudhary N, et al. Sirtuin 1 and Sirtuin 3: physiological 
modulators of metabolism. Physiol Rev 2012;92:1479- 1514.

 28. Rothberg AE, McEwen LN, Kraftson AT, et al. Impact of weight loss on waist circum-
ference and the components of the metabolic syndrome. BMJ Open Diabetes Res Care 
2017;5:e000341. doi:10.1136/bmjdr c- 2016- 000341

 29. Castaner O, Goday A, Park Y- M, et al. The gut microbiome profile in obesity: a system-
atic review. Int J Endocrinol 2018;2018:4095789. doi:10.1155/2018/4095789

 30. Gauffin Cano P, Santacruz A, Moya Á, Sanz Y. Bacteroides uniformis CECT 7771 ame-
liorates metabolic and immunological dysfunction in mice with high- fat- diet induced 
obesity. PLoS One 2012;7:e41079. doi:10.1371/journ al.pone.0041079

 31. Kuo TT, Baker K, Yoshida M, et al. Neonatal Fc receptor: from immunity to therapeu-
tics. J Clin Immunol 2010;30:777- 789.

 32. Ochs- Balcom HM, Chennamaneni R, Millen AE, et al. Vitamin D receptor gene poly-
morphisms are associated with adiposity phenotypes. Am J Clin Nutr 2011;93:5- 10.

 33. Fu J, Bonder MJ, Cenit MC, et al. The gut microbiome contributes to a substantial pro-
portion of the variation in blood lipids. Circ Res 2015;117:817- 824.

 34. Egshatyan L, Kashtanova D, Popenko A, et al. Gut microbiota and diet in patients with 
different glucose tolerance. Endocr Connect 2016;5:1- 9.

 35. Kasai C, Sugimoto K, Moritani I, et al. Comparison of the gut microbiota composition 
between obese and non- obese individuals in a Japanese population, as analyzed by ter-
minal restriction fragment length polymorphism and next- generation sequencing. BMC 
Gastroenterol 2015;15:100. doi:10.1186/s1287 6- 015- 0330- 2

 36. Ozato N, Saito S, Yamaguchi T, et al. Blautia genus associated with visceral fat accumu-
lation in adults 20- 76 years of age. NPJ Biofilms Microbiomes 2019;5:28. doi:10.1038/
s4152 2- 019- 0101- x

 37. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An 
obesity- associated gut microbiome with increased capacity for energy harvest. Nature 
2006;444:1027- 1031.

 38. Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates 
with metabolic markers. Nature 2013;500:541- 546.

 39. Henke MT, Kenny DJ, Cassilly CD, Vlamakis H, Xavier RJ, Clardy J. Ruminococcus 
gnavus, a member of the human gut microbiome associated with Crohn’s disease, pro-
duces an inflammatory polysaccharide. Proc Natl Acad Sci U S A 2019;116:12672- 12677.

 40. Ortega FJ, Mercader JM, Catalán V, et al. Targeting the circulating MicroRNA signature 
of obesity. Clin Chem 2013;59:781- 792.

 41. Hogan JC, Stephens JM. Effects of leukemia inhibitory factor on 3T3- L1 adipocytes. J 
Endocrinol 2005;185:485- 496.

 42. Watt MJ, Dzamko N, Thomas WG, et al. CNTF reverses obesity- induced insulin resis-
tance by activating skeletal muscle AMPK. Nat Med 2006;12:541- 548.

 43. Tang WHW, Li DY, Hazen SL. Dietary metabolism, the gut microbiome, and heart fail-
ure. Nat Rev Cardiol 2019;16:137- 154.

 44. Huang Y- T, Chu SU, Loucks EB, et al. Epigenome- wide profiling of DNA methylation 
in paired samples of adipose tissue and blood. Epigenetics 2016;11:227- 236.

 45. Zmora N, Suez J, Elinav E. You are what you eat: Diet, health and the gut microbiota. 
Nat Rev Gastroenterol Hepatol 2019;16:35- 56.

 1930739x, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/oby.23127 by U

niversity O
f C

olorado D
enver, W

iley O
nline Library on [16/06/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://doi.org/10.29219/fnr.v64.3525
https://doi.org/10.1038/s41598-018-36941-9
https://doi.org/10.1186/s12986-018-0318-3
https://doi.org/10.1136/bmjdrc-2016-000341
https://doi.org/10.1155/2018/4095789
https://doi.org/10.1371/journal.pone.0041079
https://doi.org/10.1186/s12876-015-0330-2
https://doi.org/10.1038/s41522-019-0101-x
https://doi.org/10.1038/s41522-019-0101-x

